8 research outputs found

    Pax9 is required for filiform papilla development and suppresses skin-specific differentiation of the mammalian tongue epithelium

    Get PDF
    The epidermis is a derivative of the surface ectoderm. It forms a protective barrier and specific appendages including hair, nails, and different eccrine glands. The surface ectoderm also forms the epithelium of the oral cavity and tongue, which develop a slightly different barrier and form different appendages such as teeth, filiform papillae, taste papillae, and salivary glands. How this region-specific differentiation is genetically controlled is largely unknown. We show here that Pax9, which is expressed in the epithelium of the tongue but not in skin, regulates several aspects of tongue-specific epithelial differentiation. In Pax9-deficient mice filiform papillae lack the anteriorā€“posterior polarity, a defect that is associated with temporalā€“spatial changes in Hoxc13 expression. Barrier formation is disturbed in the mutant tongue and genome-wide expression profiling revealed that the expression of specific keratins (Krt), keratin-associated proteins, and members of the epidermal differentiation complex is significantly down-regulated. In situ hybridization demonstrated that several ā€˜hardā€™ keratins, Krt1-5, Krt1-24, and Krt2-16, are not expressed in the absence of Pax9. Notably, specific ā€˜softā€™ keratins, Krt2-1 and Krt2-17, normally weakly expressed in the tongue but present at high levels in skin and in orthokeratinized oral dysplasia are up-regulated in the mutant tongue epithelium. This result indicates a partial trans-differentiation to an epithelium with skin-specific characteristics. Together, our findings show that Pax9 regulates appendage formation in the mammalian tongue and identify Pax9 as an important factor for the region-specific differentiation of the surface ectoderm

    Mitochondrial Dysfunction Accounts for the Stochastic Heterogeneity in Telomere-Dependent Senescence

    Get PDF
    Aging is an inherently stochastic process, and its hallmark is heterogeneity between organisms, cell types, and clonal populations, even in identical environments. The replicative lifespan of primary human cells is telomere dependent; however, its heterogeneity is not understood. We show that mitochondrial superoxide production increases with replicative age in human fibroblasts despite an adaptive UCP-2ā€“dependent mitochondrial uncoupling. This mitochondrial dysfunction is accompanied by compromised [Ca(2+)](i) homeostasis and other indicators of a retrograde response in senescent cells. Replicative senescence of human fibroblasts is delayed by mild mitochondrial uncoupling. Uncoupling reduces mitochondrial superoxide generation, slows down telomere shortening, and delays formation of telomeric Ī³-H2A.X foci. This indicates mitochondrial production of reactive oxygen species (ROS) as one of the causes of replicative senescence. By sorting early senescent (SES) cells from young proliferating fibroblast cultures, we show that SES cells have higher ROS levels, dysfunctional mitochondria, shorter telomeres, and telomeric Ī³-H2A.X foci. We propose that mitochondrial ROS is a major determinant of telomere-dependent senescence at the single-cell level that is responsible for cell-to-cell variation in replicative lifespan

    Efficient virus assembly, but not infectivity, determines the magnitude of hepatitis C virus-induced interferon alpha responses of plasmacytoid dendritic cells.

    Get PDF
    Worldwide, approximately 160 million people are chronically infected with hepatitis C virus (HCV), seven distinct genotypes of which are discriminated. The hallmarks of HCV are its genetic variability and the divergent courses of hepatitis C progression in patients. We assessed whether intragenotypic HCV variations would differentially trigger host innate immunity. To this end, we stimulated human primary plasmacytoid dendritic cells (pDC) with crude preparations of different cell culture-derived genotype 2a HCV variants. Parental Japanese fulminant hepatitis C virus (JFH1) did not induce interferon alpha (IFN-Ī±), whereas the intragenotypic chimera Jc1 triggered massive IFN-Ī± responses. Purified Jc1 retained full infectivity but no longer induced IFN-Ī±. Coculture of pDC with HCV-infected hepatoma cells retrieved the capacity to induce IFN-Ī±, whereas Jc1-infected cells triggered stronger responses than JFH1-infected cells. Since the infectivity of virus particles did not seem to affect pDC activation, we next tested Jc1 mutants that were arrested at different stages of particle assembly. These experiments revealed that efficient assembly and core protein envelopment were critically needed to trigger IFN-Ī±. Of note, sequences within domain 2 of the core that vitally affect virus assembly also crucially influenced the IFN-Ī± responses of pDC. These data showed that viral determinants shaped host innate IFN-Ī± responses to HCV

    Glucocorticosteroids increase cell entry by hepatitis C virus.

    Get PDF
    BACKGROUND & AIMS: Corticosteroids are used as immunosuppressants in patients with autoimmune disorders and transplant recipients. However, these drugs worsen hepatitis C virus (HCV) recurrence after liver transplantation, suggesting that they may directly exacerbate HCV infection. METHODS: The influence of immunosuppressive drugs on HCV replication, assembly, and entry was assessed in Huh-7.5 cells and primary human hepatocytes using cell culture- and patient-derived HCV. Replication was quantified by immunofluorescence, luciferase assays, quantitative reverse-transcriptase polymerase chain reaction, or core enzyme-linked immunosorbent assays. Expression of HCV entry factors was evaluated by cell sorting and immunoblot analyses. RESULTS: Glucocorticosteroids slightly reduced HCV RNA replication but increased efficiency of HCV entry by up to 10-fold. This was independent of HCV genotype but specific to HCV because vesicular stomatitis virus glycoprotein-dependent infection was not affected by these drugs. The increase in HCV entry was accompanied by up-regulation of messenger RNA and protein levels of occludin and the scavenger receptor class B type I-2 host cell proteins required for HCV infection; increase of entry by glucocorticosteroids was ablated by RU-486, an inhibitor of glucocorticosteroid signaling. Glucocorticosteroids increased propagation of cell culture-derived HCV approximately 5- to 10-fold in partially differentiated human hepatoma cells and increased infection of primary human hepatocytes by cell culture- and patient-derived HCV. CONCLUSIONS: Glucocorticosteroides specifically increase HCV entry by up-regulating the cell entry factors occludin and scavenger receptor class B type I. Our data suggest that the potential effects of high-dose glucocorticosteroids on HCV infection in vivo may be due to increased HCV dissemination

    Hepatitis C virus replication in mouse cells is restricted by IFN-dependent and -independent mechanisms.

    Get PDF
    Current treatment strategies for hepatitis C virus (HCV) infection include pegylated interferon (IFN)-alfa and ribavirin. Approximately 50% of patients control HCV infection after treatment, but the broad range of patients' outcomes and responses to treatment, among all genotypes, indicates a role for host factors. Although the IFN system is important in limiting HCV replication, the virus has evolved mechanisms to circumvent the IFN response. However, direct, IFN-independent antiviral processes also might help control HCV replication. We examined the role of IFN-independent responses against HCV replication

    Characterization of the inhibition of hepatitis C virus entry by in vitro-generated and patient-derived oxidized low-density lipoprotein.

    Get PDF
    Oxidized low-density lipoprotein (oxLDL) has been reported as an inhibitor of hepatitis C virus (HCV) cell entry, making it the only known component of human lipid metabolism with an antiviral effect on HCV. However, several questions remain open, including its effect on full-length cell-culture-grown HCV (HCVcc) of different genotypes or on other steps of the viral replication cycle, its mechanism of action, and whether endogenous oxLDL shares the anti-HCV properties of in vitro-generated oxLDL. We combined molecular virology tools with oxLDL serum measurements in different patient cohorts to address these questions. We found that oxLDL inhibits HCVcc at least as potently as HCV pseudoparticles. There was moderate variation between genotypes, with genotype 4 appearing the most oxLDL sensitive. Intracellular RNA replication and assembly and release of new particles were unaffected. HCV particles entering target cells lost oxLDL sensitivity with time kinetics parallel to anti-SR-BI (scavenger receptor class B type I), but significantly earlier than anti-CD81, suggesting that oxLDL acts by perturbing interaction between HCV and SR-BI. Finally, in chronically HCV-infected individuals, endogenous serum oxLDL levels did not correlate with viral load, but in HCV-negative sera, high endogenous oxLDL had a negative effect on HCV infectivity in vitro. Conclusion: oxLDL is a potent pangenotype HCV entry inhibitor that maintains its activity in the context of human serum and targets an early step of HCV entry
    corecore