5 research outputs found

    BRD9-SMAD2/3 orchestrates stemness and tumorigenesis in pancreatic ductal adenocarcinoma

    Get PDF
    Background and Aims The dismal prognosis of pancreatic ductal adenocarcinoma (PDAC) is linked to the presence of pancreatic cancer stem-like cells (CSCs) that respond poorly to current chemotherapy regimens. The epigenetic mechanisms regulating CSCs are currently insufficiently understood, which hampers the development of novel strategies for eliminating CSCs. Methods By small molecule compound screening targeting 142 epigenetic enzymes, we identified that bromodomain-containing protein BRD9, a component of the BAF histone remodeling complex, is a key chromatin regulator to orchestrate the stemness of pancreatic CSCs via cooperating with the TGFβ/Activin-SMAD2/3 signaling pathway. Results Inhibition and genetic ablation of BRD9 block the self-renewal, cell cycle entry into G0 phase and invasiveness of CSCs, and improve the sensitivity of CSCs to gemcitabine treatment. In addition, pharmacological inhibition of BRD9 significantly reduced the tumorigenesis in patient-derived xenografts mouse models and eliminated CSCs in tumors from pancreatic cancer patients. Mechanistically, inhibition of BRD9 disrupts enhancer-promoter looping and transcription of stemness genes in CSCs. Conclusions Collectively, the data suggest BRD9 as a novel therapeutic target for PDAC treatment via modulation of CSC stemness

    Influence of FOSL1 Inhibition on Vascular Calcification and ROS Generation through Ferroptosis via P53-SLC7A11 Axis

    No full text
    Background: Vascular calcification during aging is highly prevalent in patients with cardiovascular disease; however, there is still no improvement in clarifying the development of vascular calcification. FOSL1 is a transcription regulator belonging to the AP-1 family, which has a unique function in vascular senescence, but its role in vascular calcification needs to be further explored. Methods: Primary mouse vascular smooth muscle cells were isolated and used to construct a calcification model in vitro. Seven-week-old male C57BL/6 mice were used to build the vitD3-induced calcification model in vivo. qRT-PCR and western blot were used to verify the expression of FOSL1 and other genes expressed in vascular smooth muscle cells and aortas. The level of calcification was determined by Alizarin Red S (ARS) staining and the calcium content assay. The level of cellular GSH was detected by the GSH assay kit. Results: Here, we report that FOSL1 was up-regulated after high-calcium/phosphate treatment in both the in vivo and in vitro vascular calcification models. Functional studies have shown that the reduction of FOSL1 attenuates ferroptosis and calcification in vascular smooth muscle cells, as indicated by ARS staining, calcium content assay, and western blot. The inhibition of FOSL1 downregulated the expression of bone-related molecules including Msh Homeobox 2 (MSX2) and tumor necrosis factor receptor superfamily, member 11b/osteoprotegerin (OPG), suggesting that FOSL1 promoted osteogenic differentiation of vascular smooth muscle cells. Furthermore, we found that the ferroptosis-inducing drug erastin can significantly accelerate calcification in the aortic ring while Ferrostatin-1 (fer-1), a drug to protect cells from ferroptosis, can alleviate calcification. Further experiments have shown that inhibiting FOSL1 can promote the expression of ferroptosis-related genes and attenuate calcification. Functionally, cellular GSH levels were increased after the reduction of FOSL1. Conclusions: In this study, we observed a significant protective effect when we reduced the expression of FOSL1 during vascular calcification, and this effect might regulate ferroptosis to a great extent

    Zinc ameliorates human aortic valve calcification through GPR39 mediated ERK1/2 signalling pathway

    Get PDF
    AimsCalcific aortic valve disease (CAVD) is the most common heart valve disease in the Western world. It has been reported that zinc is accumulated in calcified human aortic valves. However, whether zinc directly regulates CAVD is yet to be elucidated. The present study sought to determine the potential role of zinc in the pathogenesis of CAVD.Methods and resultsUsing a combination of a human valve interstitial cell (hVIC) calcification model, human aortic valve tissues, and blood samples, we report that 20??M zinc supplementation attenuates hVIC in vitro calcification, and that this is mediated through inhibition of apoptosis and osteogenic differentiation via the zinc-sensing receptor GPR39-dependent ERK1/2 signalling pathway. Furthermore, we report that GPR39 protein expression is dramatically reduced in calcified human aortic valves, and there is a significant reduction in zinc serum levels in patients with CAVD. Moreover, we reveal that 20??M zinc treatment prevents the reduction of GPR39 observed in calcified hVICs. We also show that the zinc transporter ZIP13 and ZIP14 are significantly increased in hVICs in response to zinc treatment. Knockdown of ZIP13 or ZIP14 significantly inhibited hVIC in vitro calcification and osteogenic differentiation.ConclusionsTogether, these findings suggest that zinc is a novel inhibitor of CAVD, and report that zinc transporter ZIP13 and ZIP14 are important regulators of hVIC in vitro calcification and osteogenic differentiation. Zinc supplementation may offer a potential therapeutic strategy for CAVD

    The Prognostic Value of Serum Calcium Levels in Elderly Dilated Cardiomyopathy Patients

    No full text
    Background: It is unclear whether serum calcium on admission is associated with clinical outcomes in dilated cardiomyopathy (DCM). In this study, we conducted a retrospective study spanning a decade to investigate the prognostic value of baseline calcium in elderly patients with DCM. Methods: A total of 1,089 consecutive elderly patients (age ≥60 years) diagnosed with DCM were retrospectively enrolled from January 2010 to December 2019. Univariate and multivariate analyses were performed to investigate the association of serum calcium with their clinical outcomes. Results: In this study, the average age of the subjects was 68.36 ± 6.31 years. Receiver operating characteristic (ROC) curve analysis showed that serum calcium level had a great sensitivity and specificity for predicting in-hospital death, with an AUC of 0.732. Kaplan–Meier survival analysis showed that patients with a serum calcium >8.62 mg/dL had a better prognosis than those with a serum calcium ≤8.62 mg/dL (log-rank χ2 40.84, p < 0.001). After adjusting for several common risk factors, a serum calcium ≤8.62 mg/dL was related to a higher risk of long-term mortality (HR: 1.449; 95% CI: 1.115~1.882; p = 0.005). Conclusions: Serum calcium level could be served as a simple and affordable tool to evaluate patients’ prognosis in DCM

    Leukocyte-Specific Morrbid Promotes Leukocyte Differentiation and Atherogenesis

    No full text
    Monocyte-to-M0/M1 macrophage differentiation with unclear molecular mechanisms is a pivotal cellular event in many cardiovascular diseases including atherosclerosis. Long non-coding RNAs (lncRNAs) are a group of protein expression regulators; however, the roles of monocyte-lncRNAs in macrophage differentiation and its related vascular diseases are still unclear. The study aims to investigate whether the novel leukocyte-specific lncRNA Morrbid could regulate macrophage differentiation and atherogenesis. We identified that Morrbid was increased in monocytes and arterial walls from atherosclerotic mouse and from patients with atherosclerosis. In cultured monocytes, Morrbid expression was markedly increased during monocyte to M0 macrophage differentiation with an additional increase during M0 macrophage-to-M1 macrophage differentiation. The differentiation stimuli-induced monocyte–macrophage differentiation and the macrophage activity were inhibited by Morrbid knockdown. Moreover, overexpression of Morrbid alone was sufficient to elicit the monocyte–macrophage differentiation. The role of Morrbid in monocyte–macrophage differentiation was also identified in vivo in atherosclerotic mice and was verified in Morrbid knockout mice. We identified that PI3-kinase/Akt was involved in the up-regulation of Morrbid expression, whereas s100a10 was involved in Morrbid-mediated effect on macrophage differentiation. To provide a proof of concept of Morrbid in pathogenesis of monocyte/macrophage-related vascular disease, we applied an acute atherosclerosis model in mice. The results revealed that overexpression of Morrbid enhanced but monocyte/macrophage-specific Morrbid knockout inhibited the monocytes/macrophages recruitment and atherosclerotic lesion formation in mice. The results suggest that Morrbid is a novel biomarker and a modulator of monocyte–macrophage phenotypes, which is involved in atherogenesis
    corecore