18 research outputs found
Association analyses of East Asian individuals and trans-ancestry analyses with European individuals reveal new loci associated with cholesterol and triglyceride levels
Large-scale meta-analyses of genome-wide association studies (GWAS) have identified >175 loci associated with fasting cholesterol levels, including total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), and triglycerides (TG). With differences in linkage disequilibrium (LD) structure and allele frequencies between ancestry groups, studies in additional large samples may detect new associations. We conducted staged GWAS meta-analyses in up to 69,414 East Asian individuals from 24 studies with participants from Japan, the Philippines, Korea, China, Singapore, and Taiwan. These meta-analyses identified (P < 5 × 10-8) three novel loci associated with HDL-C near CD163-APOBEC1 (P = 7.4 × 10-9), NCOA2 (P = 1.6 × 10-8), and NID2-PTGDR (P = 4.2 × 10-8), and one novel locus associated with TG near WDR11-FGFR2 (P = 2.7 × 10-10). Conditional analyses identified a second signal near CD163-APOBEC1. We then combined results from the East Asian meta-analysis with association results from up to 187,365 European individuals from the Global Lipids Genetics Consortium in a trans-ancestry meta-analysis. This analysis identified (log10Bayes Factor ≥6.1) eight additional novel lipid loci. Among the twelve total loci identified, the index variants at eight loci have demonstrated at least nominal significance with other metabolic traits in prior studies, and two loci exhibited coincident eQTLs (P < 1 × 10-5) in subcutaneous adipose tissue for BPTF and PDGFC. Taken together, these analyses identified multiple novel lipid loci, providing new potential therapeutic targets
A pH-Responsive Zwitterionic Polyurethane Prodrug as Drug Delivery System for Enhanced Cancer Therapy
Numerous nanocarriers with excellent biocompatibilities have been used to improve cancer therapy. However, nonspecific protein adsorption of nanocarriers may block the modified nanoparticles in tumor cells, which would lead to inefficient cellular internalization. To address this issue, pH-responsive polyurethane prodrug micelles with a zwitterionic segment were designed and prepared. The micelle consisted of a zwitterionic segment as the hydrophilic shell and the drug Adriamycin (DOX) as the hydrophobic inner core. As a pH-responsive antitumor drug delivery system, the prodrug micelles showed high stability in a physiological environment and continuously released the drug under acidic conditions. In addition, the pure polyurethane carrier was demonstrated to be virtually non-cytotoxic by cytotoxicity studies, while the prodrug micelles were more efficient in killing tumor cells compared to PEG-PLGA@DOX. Furthermore, the DOX cellular uptake efficiency of prodrug micelles was proved to be obviously higher than the control group by both flow cytometry and fluorescence microscopy. This is mainly due to the modification of a zwitterionic segment with PU. The simple design of zwitterionic prodrug micelles provides a new strategy for designing novel antitumor drug delivery systems with enhanced cellular uptake rates
Highly Sensitive Fluorescent Sensing for Nitrobenzene of Cd<sup>II</sup> Complexes Based on Three Isomers and a Bis-Imidazole Ligand
Detection of nitro pollutants is an important topic in environmental protection. A total of 3 Cd (II) complexes (1–3) based on 3 soft organic isomers, n-(3,5-dicarboxylato benzyloxy) benzoic acid (n = 2, 3 or 4-H3DBB), and a linear N-donor ligand, 3-bis(imidazole-l-ylmethyl) benzene (3-bibz), have been synthesized hydrothermally. Structural diversity of Complexes 1–3 displays the architectural 2D or 3D change: Complex 1 exhibits a 2D network featuring tri-nuclear metal units, Complex 2 is a 3D framework based on similar tri-nuclear metal units, and Complex 3 shows a 3D network with binuclear units. Fluorescent sensing properties exhibited in all these complexes have been discovered to detect nitrobenzene (NB) selectively and sensitively. In particular, Complex 3 possesses high sensitivity for NB with the lowest detection limit of 1.15 × 10−10 M. The results of the theoretical calculation verified the fluorescence detection mechanism of NB by these Cd-based complexes. Therefore, these Cd-based complexes might be used as excellent luminescent sensors for NB
Mechanical Grinding Preparation and Characterization of TiO2-Coated Wollastonite Composite Pigments
TiO2-coated wollastonite composite pigments were prepared by the mechano-chemical grinding of wollastonite and TiO2 powder together in a wet ultrafine stirred mill. X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy and infrared spectra were used to investigate the microstructures and morphologies of the composite and the reaction mechanism. The results indicate that the TiO2-coated wollastonite composite pigments have similar properties to titanium dioxide pigment, showing much better properties than dry and wet mixing of wollastonite and TiO2. The hiding power of TiO2-coated wollastonite composite pigments (45% TiO2) is 17.97 g/m2, reaching 81.08% of titanium dioxide. A firm combination between wollastonite and TiO2 is obtained through a surface dehydroxylation reaction during the mechano-chemical method
Supplementary document for Computational Plenoptic Ghost Diffraction - 6292774.pdf
Supplementary Materia
WNT ligands in non-small cell lung cancer: from pathogenesis to clinical practice
Abstract Non-small cell lung cancer (NSCLC) is the malignant tumor with the highest morbidity and leading cause of death worldwide, whereas its pathogenesis has not been fully elucidated. Although mutations in some crucial genes in WNT pathways such as β-catenin and APC are not common in NSCLC, the abnormal signal transduction of WNT pathways is still closely related to the occurrence and progression of NSCLC. WNT ligands (WNTs) are a class of secreted glycoproteins that activate WNT pathways through binding to their receptors and play important regulatory roles in embryonic development, cell differentiation, and tissue regeneration. Therefore, the abnormal expression or dysfunction of WNTs undoubtedly affects WNT pathways and thus participates in the pathogenesis of diseases. There are 19 members of human WNTs, WNT1, WNT2, WNT2b, WNT3, WNT3a, WNT4, WNT5a, WNT5b, WNT6, WNT7a, WNT7b, WNT8a, WNT8b, WNT9a, WNT9b, WNT10a, WNT10b, WNT11 and WNT16. The expression levels of WNTs, binding receptors, and activated WNT pathways are diverse in different tissue types, which endows the complexity of WNT pathways and multifarious biological effects. Although abundant studies have reported the role of WNTs in the pathogenesis of NSCLC, it still needs further study as therapeutic targets for lung cancer. This review will systematically summarize current research on human WNTs in NSCLC, from molecular pathogenesis to potential clinical practice
1H-NMR-Based Metabonomics Study to Reveal the Progressive Metabolism Regulation of SAP Deficiency on ApoE−/− Mice
Atherosclerosis is the most common disease of the vascular system and the metabolic disorder is one of its important molecular mechanisms. SAP protein is found to be highly expressed in atherosclerotic blood vessels. Our previous study found that SAP deficiency can significantly inhibit the development of atherosclerosis. However, the regulatory effect of SAP deficiency on AS metabolism is unknown. Based on 1H-NMR metabonomics, this study investigated the serum metabolic changes in ApoE−/−;SAP−/− mice compared with ApoE−/− mice during the whole progression of atherosclerosis. The results showed that acetate, pyruvate, choline and VLDL + LDL were statistically regulated to the normal levels as in C57 mice by SAP deficiency in ApoE−/−;SAP−/− mice at 8 w (without obvious plaques). With the appearance and aggravation of atherosclerotic plaques (8 + 4 w and 8 + 8 w), the four metabolites of acetate, pyruvate, choline and VLDL + LDL were continuously regulated, which were denoted as the metabolic regulatory markers of SAP deficiency. We also found that the changes in these four metabolites had nothing to do with high-fat diet. Therefore, it was revealed that SAP deficiency regulated the metabolic disorders in ApoE−/− prior to the appearance of obvious atherosclerotic plaques, which is one of the important mechanisms leading to the inhibition of atherosclerosis, providing a new basis for the application of SAP in atherosclerosis
Dynamic Distribution of Skin Microorganisms in Donkeys at Different Ages and Various Sites of the Body
Considerable evidence suggests that the skin microbiota is not only important and complex in humans and other mammals but also critical for maintaining health and skin homeostasis. To date, studies on the skin microorganisms of donkeys are surprisingly rare. To investigate the dynamic changes in commensal microbial communities on the skins of healthy donkeys throughout the growing period, skin and soil samples were collected from 30 healthy Dezhou donkeys (ranging from 1, 6, 12, 24 to 48 months of age) and their corresponding breeding sheds on the farm. All samples were analysed for high-throughput sequencing of the 16S rRNA and ITS to characterize the skin microbiota of healthy donkeys and compare the differences in skin microbiota among donkeys of different ages. There were notable differences in the proportions of various genera (including bacteria and fungi) between dorsal and abdominal skin with increasing age. The comparison of the skin microbial communities among these groups revealed that Staphylococcus was mainly enriched in the early growing stage (1 and 6 months), while the relative abundance of Streptococcus was higher in both the 1- and 48-month-old age groups. Moreover, some bacteria and commensal fungi, such as Staphylococcus and Trichosporon, were found to be positively correlated between the skin and the environment. This is the first study to investigate the dynamic changes in skin microbiota diversity and composition in donkeys of different ages and at different sites of the body. Furthermore, this study provides insights into the dynamic alterations in skin microbes during a donkey’s growth and characterizes the profiles of bacterial and fungal communities across a donkey’s body regions (dorsal and abdomen)