5 research outputs found

    Dehydrogenation of Propane to Propylene Using Promoter-Free Hierarchical Pt/Silicalite-<i>1</i> Nanosheets

    No full text
    Propane dehydrogenation (PDH) is the extensive pathway to produce propylene, which is as a very important chemical building block for the chemical industry. Various catalysts have been developed to increase the propylene yield over recent decades; however, an active site of monometallic Pt nanoparticles prevents them from achieving this, due to the interferences of side-reactions. In this context, we describe the use of promoter-free hierarchical Pt/silicalite-1 nanosheets in the PDH application. The Pt dispersion on weakly acidic supports can be improved due to an increase in the metal-support interaction of ultra-small metal nanoparticles and silanol defect sites of hierarchical structures. This behavior leads to highly selective propylene production, with more than 95% of propylene selectivity, due to the complete suppression of the side catalytic cracking. Moreover, the oligomerization as a side reaction is prevented in the presence of hierarchical structures due to the shortening of the diffusion path length

    One-Pot Synthesis of Ultra-Small Pt Dispersed on Hierarchical Zeolite Nanosheet Surfaces for Mild Hydrodeoxygenation of 4-Propylphenol

    No full text
    The rational design of ultra-small metal clusters dispersed on a solid is of crucial importance in modern nanotechnology and catalysis. In this contribution, the concept of catalyst fabrication with a very ultra-small size of platinum nanoparticles supported on a hierarchical zeolite surface via a one-pot hydrothermal system was demonstrated. Combining the zeolite gel with ethylenediaminetetraacetic acid (EDTA) as a ligand precursor during the crystallization process, it allows significant improvement of the metal dispersion on a zeolite support. To illustrate the beneficial effect of ultra-small metal nanoparticles on a hierarchical zeolite surface as a bifunctional catalyst, a very high catalytic performance of almost 100% of cycloalkane product yield can be achieved in the consecutive mild hydrodeoxygenation of 4-propylphenol, which is a lignin-derived model molecule. This instance opens up perspectives to improve the efficiency of a catalyst for the sustainable conversion of biomass-derived compounds to fuels

    A dual-templating synthesis strategy to hierarchical ZSM-5 zeolites as efficient catalysts for the methanol-to-hydrocarbons reaction

    No full text
    A novel dual-templating synthesis strategy is presented to obtain hierarchical ZSM-5 zeolite using a combination of known structure-directing agents for ZSM-5 synthesis and C16H33-[N+-methylpiperidine] (C16MP) as mesoporogen. C16MP is a cheap surfactant, which can be obtained in a single step by alkylation of N-methylpiperidine. The zeolite materials were extensively characterized for their textural and acidic properties and evaluated on the basis of their ability to convert methanol to hydrocarbons. Bulk and nanosheet (di-quaternary ammonium surfactant) ZSM-5 zeolites served as reference materials. Hierarchical ZSM-5 zeolite can be obtained in this way with diethylamine, n-propylamine, 1,4-diaminobutane, 1,6-diaminohexane. In particular, the combination with diethylamine afforded a material that displayed similar performance in the methanol-to-hydrocarbons reaction as nanosheet ZSM-5. The optimum ZSM-5 zeolite is highly crystalline, contains a large mesopore volume and few silanol groups and external Brønsted acid sites, which contributes to the low rate of deactivation
    corecore