57 research outputs found

    Formation and growth characteristics of nanostructured carbon films on nascent Ag clusters during room-temperature electrochemical CO2 reduction

    Get PDF
    Synthesis of carbon nanostructures at room temperature and under atmospheric pressure is challenging but it can provide significant impact on the development of many future advanced technologies. Here, the formation and growth characteristics of nanostructured carbon films on nascent Ag clusters during room-temperature electrochemical CO(2) reduction reactions (CO(2)RR) are demonstrated. Under a ternary electrolyte system containing [BMIm](+)[BF(4)](−), propylene carbonate, and water, a mixture of sp(2)/sp(3) carbon allotropes were grown on the facets of Ag nanocrystals as building blocks. We show that (i) upon sufficient energy supplied by an electric field, (ii) the presence of negatively charged nascent Ag clusters, and (iii) as a function of how far the C–C coupling reaction of CO(2)RR (10–390 min) has advanced, the growth of nanostructured carbon can be divided into three stages: Stage 1: sp(3)-rich carbon and diamond seed formation; stage 2: diamond growth and diamond–graphite transformation; and stage 3: amorphous carbon formation. The conversion of CO(2) and high selectivity for the solid carbon products (>95%) were maintained during the full CO(2)RR reaction length of 390 min. The results enable further design of the room-temperature production of nanostructured carbon allotropes and/or the corresponding metal-composites by a viable negative CO(2) emission technology

    Inter-conversion between zeolitic imidazolate frameworks: a dissolution-recrystallization process

    No full text
    status: publishe

    Preparation of Palladium-Impregnated Ceria by Metal Complex Decomposition for Methane Steam Reforming Catalysis

    No full text
    Palladium-impregnated ceria materials were successfully prepared via an integrated procedure between a metal complex decomposition method and a microwave-assisted wetness impregnation. Firstly, ceria (CeO2) powders were synthesized by thermal decomposition of cerium(III) complexes prepared by using cerium(III) nitrate or cerium(III) chloride as a metal source to form a metal complex precursor with triethanolamine or benzoxazine dimer as an organic ligand. Palladium(II) nitrate was consequently introduced to the preformed ceria materials using wetness impregnation while applying microwave irradiation to assist dispersion of the dopant. The palladium-impregnated ceria materials were obtained by calcination under reduced atmosphere of 10% H2 in He stream at 700°C for 2 h. Characterization of the palladium-impregnated ceria materials reveals the influences of the metal complex precursors on the properties of the obtained materials. Interestingly, the palladium-impregnated ceria prepared from the cerium(III)-benzoxazine dimer complex revealed significantly higher BET specific surface area and higher content of the more active Pdδ+ (δ > 2) species than the materials prepared from cerium(III)-triethanolamine complexes. Consequently, it exhibited the most efficient catalytic activity in the methane steam reforming reaction. By optimization of the metal complex precursors, characteristics of the obtained palladium-impregnated ceria catalysts can be modified and hence influence the catalytic activity

    Hierarchical structuring of metal-organic framework thin-films on quartz crystal microbalance (QCM) substrates for selective adsorption applications

    No full text
    Continuous stepwise liquid-phase epitaxial (LPE) growth is one of the most effective procedures for structuring metal–organic frameworks (MOFs) as two-dimensional superstructures, such as thin-films. Alternation of the building block precursors between the individual LPE growth cycles (i.e. from one linker to the other) allows heterostructured MOF films consisting of two different MOFs with different structural or chemical properties to be synthesized with a precise control of the growth sequence. Here, we employ the LPE growth strategy for the preparation of highly functional, hierarchically structured core–shell architectures consisting of [Zn₄O(3,5-dialkylcarboxypyrazolate)]₃n-based frameworks. Specifically, the small-pore [Zn₄O(3-methyl-5-isopropyl-4-carboxypyrazolate)₃]n (Zn-MI) and [Zn₄O(3,5- diethyl-4-carboxypyrazolate)₃]n (Zn-DE) frameworks are respectively deposited as a size selective layer upon larger-pore [Zn₄O(3,5-dimethyl-4-carboxypyrazolate)₃]n (Zn-DM) and [Zn₄O(3-methyl-5-ethyl-4- carboxypyrazolate)₃]n (Zn-ME) layers. Direct growth of the MOF layers on the Au surfaces of quartz crystal microbalance (QCM) sensors allowed the adsorption properties of the heterostructures to be probed in real-time. Multiple-component adsorption experiments in an environment-controlled QCM apparatus revealed size selectivity with respect to the adsorption of alcohols, as well as the molecular recognition of methanol over water. These properties stem from the positioning of the small-pore Zn-MI (or Zn-DE) layer on the larger-pore Zn-DM (or Zn-ME) layer, facilitating attractive synergistic properties for adsorptive selectivity and providing a possibility for further development in MOF-based sensing applications.Suttipong Wannapaiboon, Min Tu, Kenji Sumida, Kira Khaletskaya, Shuhei Furukawa, Susumu Kitagawa and Roland A. Fische

    Novel Dihydro-1,3,2H-benzoxazine Derived from Furfurylamine: Crystal Structure, Hirshfeld Surface Analysis, Photophysical Property, and Computational Study

    No full text
    Dihydro-1,3,2H-benzoxazines (or benzoxazine monomers) are a class of compounds that have been widely utilized in many areas such as the production of the functional polymers and optoelectronic materials. The structure variety of the benzoxazines plays a vital role in their desired properties. The effort of synthesizing functionalized benzoxazines from bioresources is of interest for sustainable development. Herein, we report the synthesis of the novel benzoxazine monomer referred to as 3-(furan-2-ylmethyl)-6-methyl-3,4-dihydro-2H-benzo[e][1,3]oxazine or benzoxazine (I) from a one-pot Mannich reaction using p-cresol, paraformaldehyde, and furfurylamine (a bio-derived amine). An X-ray crystallographic study was performed at low temperature (100 K) to obtain the structural characteristics of the benzoxazine (I). The result reveals that the oxazine ring adopts a half chair conformation to locate all the members of the benzoxazine ring as planar as possible by employing the expansion of the bond angles within the ring. Apart from the structural parameters, the intermolecular interactions were also examined. It was found that the significant interactions within the crystal are C–H···N, C–H···O, and the C–H···π interactions. The C–H···N interactions link the benzoxazine (I) molecules into an infinite molecular chain, propagating along the [100] direction. Hirshfeld surfaces and their corresponding fingerprint plots were comprehensively analyzed to confirm and quantify the significance of these interactions. Moreover, the photophysical properties of the benzoxazine (I) were investigated in solvents with various polarities. The corresponding relations between the structural features, frontier molecular orbitals, and absorption-and-emission characteristics were proposed and explained according to the DFT and TD-DFT calculations

    BODIPY-Pyridylhydrazone Probe for Fluorescence Turn-On Detection of Fe3+ and Its Bioimaging Application

    No full text
    A novel pyridylhydrazone-tethered BODIPY (BODIPY-PH) was synthesized, fully characterized via nuclear magnetic resonance (NMR), Fourier transform infrared spectroscopic (FTIR), and single-crystal X-ray diffraction (SC-XRD) techniques, and developed for the selective detection of Fe3+ through fluorescent enhancement process. This derivative showed 1:1 binding with Fe3+ in an acetonitrile-water mixture (1:9 v/v) with the binding constant (K) of 5.4 × 104 M−1 and the limit of detection of 0.58 µM. The Fe3+ complexation reaction has been proved to be a reversible process and could be effectively repeated up to three cycles. The electronic properties of BODIPY-PH and its Fe3+ complex modeled by the density functional theory (DFT) method suggested the presence of chelation-enhanced fluorescence (CHEF) effect in the Fe3+ binding reaction. The X-ray absorption spectroscopy (XAS) probed at Fe K-edge confirmed the complex formation between BODIPY-PH and the Fe3+ in an octahedral geometry. Finally, bioimaging against human embryonic kidney (Hek293) cell, through confocal fluorescence microscopic technique indicated that the BODIPY-PH displayed good permeability and low toxicity toward the tested cell lines and showed enhanced fluorescent signal in the cells incubated with Fe3+ proving its capability for Fe3+ analysis in cellular matrix
    • …
    corecore