172 research outputs found

    Primate Primordial Germ Cells Acquire Transplantation Potential by Carnegie Stage 23.

    Get PDF
    Primordial germ cells (PGCs) are the earliest embryonic progenitors in the germline. Correct formation of PGCs is critical to reproductive health as an adult. Recent work has shown that primate PGCs can be differentiated from pluripotent stem cells; however, a bioassay that supports their identity as transplantable germ cells has not been reported. Here, we adopted a xenotransplantation assay by transplanting single-cell suspensions of human and nonhuman primate embryonic Macaca mulatta (rhesus macaque) testes containing PGCs into the seminiferous tubules of adult busulfan-treated nude mice. We discovered that both human and nonhuman primate embryonic testis are xenotransplantable, generating colonies while not generating tumors. Taken together, this work provides two critical references (molecular and functional) for defining transplantable primate PGCs. These results provide a blueprint for differentiating pluripotent stem cells to transplantable PGC-like cells in a species that is amenable to transplantation and fertility studies

    Enhancing the machine vision performance with multi-spectral light sources

    Full text link
    This study mainly focuses on the performance of different multi-spectral light sources on different object colors in machine vision and tries to enhance machine vision with multi-spectral light sources. Using different color pencils as samples, by recognizing the collected images with two classical neural networks, AlexNet and VGG19, the performance was investigated under 35 different multi-spectral light sources. The results show that for both models there are always some non-pure white light sources, whose accuracy is better than pure white light, which suggests the potential of multi-spectral light sources to further enhance the effectiveness of machine vision. The comparison of both models is also performed, and surprised to find that the overall performance of VGG19 is lower than that of AlexNet, which shows that the importance of the choice of multi-spectral light sources and models.Comment: 12 pages, 7 figure

    TFAP2C regulates transcription in human naive pluripotency by opening enhancers.

    Get PDF
    Naive and primed pluripotent human embryonic stem cells bear transcriptional similarity to pre- and post-implantation epiblast and thus constitute a developmental model for understanding the pluripotent stages in human embryo development. To identify new transcription factors that differentially regulate the unique pluripotent stages, we mapped open chromatin using ATAC-seq and found enrichment of the activator protein-2 (AP2) transcription factor binding motif at naive-specific open chromatin. We determined that the AP2 family member TFAP2C is upregulated during primed to naive reversion and becomes widespread at naive-specific enhancers. TFAP2C functions to maintain pluripotency and repress neuroectodermal differentiation during the transition from primed to naive by facilitating the opening of enhancers proximal to pluripotency factors. Additionally, we identify a previously undiscovered naive-specific POU5F1 (OCT4) enhancer enriched for TFAP2C binding. Taken together, TFAP2C establishes and maintains naive human pluripotency and regulates OCT4 expression by mechanisms that are distinct from mouse

    Targeting the complex I and III of mitochondrial electron transport chain as a potentially viable option in liver cancer management

    Get PDF
    Abstract Liver cancer is one of the most common and lethal types of oncological disease in the world, with limited treatment options. New treatment modalities are desperately needed, but their development is hampered by a lack of insight into the underlying molecular mechanisms of disease. It is clear that metabolic reprogramming in mitochondrial function is intimately linked to the liver cancer process, prompting the possibility to explore mitochondrial biochemistry as a potential therapeutic target. Here we report that depletion of mitochondrial DNA, pharmacologic inhibition of mitochondrial electron transport chain (mETC) complex I/complex III, or genetic of mETC complex I restricts cancer cell growth and clonogenicity in various preclinical models of liver cancer, including cell lines, mouse liver organoids, and murine xenografts. The restriction is linked to the production of reactive oxygen species, apoptosis induction and reduced ATP generation. As a result, our findings suggest that the mETC compartment of mitochondria could be a potential therapeutic target in liver cancer

    Targeted DNA demethylation of the Arabidopsis genome using the human TET1 catalytic domain.

    Get PDF
    DNA methylation is an important epigenetic modification involved in gene regulation and transposable element silencing. Changes in DNA methylation can be heritable and, thus, can lead to the formation of stable epialleles. A well-characterized example of a stable epiallele in plants is fwa, which consists of the loss of DNA cytosine methylation (5mC) in the promoter of the FLOWERING WAGENINGEN (FWA) gene, causing up-regulation of FWA and a heritable late-flowering phenotype. Here we demonstrate that a fusion between the catalytic domain of the human demethylase TEN-ELEVEN TRANSLOCATION1 (TET1cd) and an artificial zinc finger (ZF) designed to target the FWA promoter can cause highly efficient targeted demethylation, FWA up-regulation, and a heritable late-flowering phenotype. Additional ZF-TET1cd fusions designed to target methylated regions of the CACTA1 transposon also caused targeted demethylation and changes in expression. Finally, we have developed a CRISPR/dCas9-based targeted demethylation system using the TET1cd and a modified SunTag system. Similar to the ZF-TET1cd fusions, the SunTag-TET1cd system is able to target demethylation and activate gene expression when directed to the FWA or CACTA1 loci. Our study provides tools for targeted removal of 5mC at specific loci in the genome with high specificity and minimal off-target effects. These tools provide the opportunity to develop new epialleles for traits of interest, and to reactivate expression of previously silenced genes, transgenes, or transposons
    corecore