31 research outputs found

    Pathology of the liver sinusoids

    No full text
    The hepatic sinusoids comprise a complex of vascular conduits to transport blood from the porta hepatis to the inferior vena cava through the liver. Under normal conditions, portal venous and hepatic artery pressures are equalized within the sinusoids, oxygen and nutrients from the systemic circulation are delivered to the parenchymal cells and differentially distributed throughout the liver acini, and proteins of liver derivation are carried into the cardiac/systemic circulation. Liver sinusoid structures are lined by endothelial cells unique to their location, and Kupffer cells. Multifunctional hepatic stellate cells and various immune active cells are localized within the space of Disse between the sinusoid and the adjacent hepatocytes. Flow within the sinusoids can be compromised by physical or pressure blockage in their lumina as well as obstructive processes within the space of Disse. The intimate relationship of the liver sinusoids to neighbouring hepatocytes is a significant factor affecting the health of hepatocytes, or transmission of the effects of injury within the sinusoidal space. Pathologists should recognize several patterns of injury involving the sinusoids and surrounding hepatocytes. In this review, injury, alterations and accumulations within the liver sinusoids are illustrated and discussed. © 2014 John Wiley & Sons Ltd

    Nomenclature of the finer branches of the biliary tree: Canals, ductules, and ductular reactions in human livers

    Get PDF
    The work of liver stem cell biologists, largely carried out in rodent models, has now started to manifest in human investigations and applications. We can now recognize complex regenerative processes in tissue specimens that had only been suspected for decades, but we also struggle to describe what we see in human tissues in a way that takes into account the findings from the animal investigations, using a language derived from species not, in fact, so much like our own. This international group of liver pathologists and hepatologists, most of whom are actively engaged in both clinical work and scientific research, seeks to arrive at a consensus on nomenclature for normal human livers and human reactive lesions that can facilitate more rapid advancement of our field. (HEPATOLOGY 2004; 39:1739–1745.) The fine detail of normal liver microanatomy is not well understood.1, 2 This is true whether discussing hepatic vasculature, bile ducts, stroma and matrix, innervation, or lymphatics. Some points are known, but gaps remain. The distal branches of the biliary tree are reasonably well defined: the common bile duct arises from confluence of the right and left hepatic ducts, which arise from segmental ducts, which arise from septal ducts arising from interlobular ducts.3 It is known that these interlobular ducts arise from still smaller cholangiocyte-lined structures and that the lumina of these in turn are in structural continuity with the lumen of hepatocellular bile canaliculi. But the terms used for these smallest, most proximal structures have been confusing

    Pathological diagnosis of liver cell adenoma and focal nodular hyperplasia : Bordeaux update

    No full text
    Pathological diagnosis of liver cell adenoma, hepatocellular adenoma (HCA), and focal nodular hyperplasia (FNH) is discussed. HCA is a rare tumor, presenting in a variety of clinical settings, which cannot be identified conclusively by any currently available imaging technique. FNH has been reported in 0.6-3% of the general population and is 10 times more frequently observed than adenomas in referral centers. The examination of a liver biopsy or resection specimen remains the standard practice to establish the diagnosis of HCA and FNH when radiographic investigations have failed to establish a definitive diagnosis. The optimal care of patients with liver nodule requires the combined expertise of hepatologists, pathologists, radiologists, and surgeons. development of more readily available immunobiological tools will permit significant improvements in the liver biopsy interpretation in the ability to distinguish HCA and FNH
    corecore