96 research outputs found

    Fabrication of Nickel Nanostructure Arrays Via a Modified Nanosphere Lithography

    Get PDF
    In this paper, we present a modified nanosphere lithographic scheme that is based on the self-assembly and electroforming techniques. The scheme was demonstrated to fabricate a nickel template of ordered nanobowl arrays together with a nickel nanostructure array-patterned glass substrate. The hemispherical nanobowls exhibit uniform sizes and smooth interior surfaces, and the shallow nanobowls with a flat bottom on the glass substrate are interconnected as a net structure with uniform thickness. A multiphysics model based on the level set method (LSM) was built up to understand this fabricating process by tracking the interface between the growing nickel and the electrolyte. The fabricated nickel nanobowl template can be used as a mold of long lifetime in soft lithography due to the high strength of nickel. The nanostructure–patterned glass substrate can be used in optical and magnetic devices due to their shape effects. This fabrication scheme can also be extended to a wide range of metals and alloys

    Observation of the Radiative Decay D∗+→D+γD^{*+}\to D^{+}\gamma

    Full text link
    We have observed a signal for the decay D*+ -> D+ gamma at a significance of 4 standard deviations. From the measured branching ratio B(D*+ -> D+ gamma)/B(D*+ -> D+ pi0)=0.055 +- 0.014 +- 0.010 we find B(D*+ -> D+ gamma)= 0.017 +- 0.004 +- 0.003, where the first uncertainty is statistical and the second is systematic. We also report the highest precision measurements of the remaining D*+ branching fractions.Comment: 10 page postscript file, postscript file also available through http://w4.lns.cornell.edu/public/CLN

    Efficacy and Safety of Three Antiretroviral Regimens for Initial Treatment of HIV-1: A Randomized Clinical Trial in Diverse Multinational Settings

    Get PDF
    Background:Antiretroviral regimens with simplified dosing and better safety are needed to maximize the efficiency of antiretroviral delivery in resource-limited settings. We investigated the efficacy and safety of antiretroviral regimens with once-daily compared to twice-daily dosing in diverse areas of the world.Methods and Findings:1,571 HIV-1-infected persons (47% women) from nine countries in four continents were assigned with equal probability to open-label antiretroviral therapy with efavirenz plus lamivudine-zidovudine (EFV+3TC-ZDV), atazanavir plus didanosine-EC plus emtricitabine (ATV+DDI+FTC), or efavirenz plus emtricitabine-tenofovir-disoproxil fumarate (DF) (EFV+FTC-TDF). ATV+DDI+FTC and EFV+FTC-TDF were hypothesized to be non-inferior to EFV+3TC-ZDV if the upper one-sided 95% confidence bound for the hazard ratio (HR) was ≤1.35 when 30% of participants had treatment failure.An independent monitoring board recommended stopping study follow-up prior to accumulation of 472 treatment failures. Comparing EFV+FTC-TDF to EFV+3TC-ZDV, during a median 184 wk of follow-up there were 95 treatment failures (18%) among 526 participants versus 98 failures among 519 participants (19%; HR 0.95, 95% CI 0.72-1.27; p = 0.74). Safety endpoints occurred in 243 (46%) participants assigned to EFV+FTC-TDF versus 313 (60%) assigned to EFV+3TC-ZDV (HR 0.64, CI 0.54-0.76; p<0.001) and there was a significant interaction between sex and regimen safety (HR 0.50, CI 0.39-0.64 for women; HR 0.79, CI 0.62-1.00 for men; p = 0.01). Comparing ATV+DDI+FTC to EFV+3TC-ZDV, during a median follow-up of 81 wk there were 108 failures (21%) among 526 participants assigned to ATV+DDI+FTC and 76 (15%) among 519 participants assigned to EFV+3TC-ZDV (HR 1.51, CI 1.12-2.04; p = 0.007).Conclusion: EFV+FTC-TDF had similar high efficacy compared to EFV+3TC-ZDV in this trial population, recruited in diverse multinational settings. Superior safety, especially in HIV-1-infected women, and once-daily dosing of EFV+FTC-TDF are advantageous for use of this regimen for initial treatment of HIV-1 infection in resource-limited countries. ATV+DDI+FTC had inferior efficacy and is not recommended as an initial antiretroviral regimen.Trial Registration:http://www.ClinicalTrials.gov NCT00084136

    A New Data-Stream-Mining-Based Battery Equalization Method

    No full text
    Balancing battery cells is a key task for battery management systems (BMS). Imbalances of cells decrease the capacity and lifetime of the battery pack. Many balancing topologies and strategies have been proposed to balance the electric charges among cells and most of the intelligent control strategies select cells (to shuttle charges) by comparing their terminal voltages. However, the nature of battery equalization is to balance the energy stored in individual cells. The measured terminal voltage is just an external characteristic and cannot accurately reflect the state of charge (SOC) of the cell, especially in a noisy environment. Additionally, when the consistencies of cells are very poor, balancing the cells with terminal voltages will lead to serious errors. In this paper, we introduced a novel battery balancing method, in which the charge-balancing criterion was not the cell voltage, but the shuttling capacities among cells. Data stream mining (DSM) technique was used to calculate the shuttling capacities. A single switched capacitor (SSC) based cell balancing topology was used to test the performance of the proposed method. With the obtained summary information, the cells, the sequence, and the quantity of the equalized charge can be decided automatically by the proposed algorithm. The simulation and experiment results have shown that the proposed method was effective and convenient

    Co-Design Based Lateral Motion Control of All-Wheel-Independent-Drive Electric Vehicles with Network Congestion

    No full text
    All-wheel-independent-drive electric vehicles (AWID-EVs) have considerable advantages in terms of energy optimization, drivability and driving safety due to the remarkable actuation flexibility of electric motors. However, in their current implementations, various real-time data in the vehicle control system are exchanged via a controller area network (CAN), which causes network congestion and network-induced delays. These problems could lead to systemic instability and make the system integration difficult. The goal of this paper is to provide a design methodology that can cope with all these challenges for the lateral motion control of AWID-EVs. Firstly, a continuous-time model of an AWID-EV is derived. Then an expression for determining upper and lower bounds on the delays caused by CAN is presented and with which a discrete-time model of the closed-loop CAN system is derived. An expression on the bandwidth utilization is introduced as well. Thirdly, a co-design based scheme combining a period-dependent linear quadratic regulator (LQR) and a dynamic period scheduler is designed for the resulting model and the stability criterion is also derived. The results of simulations and hard-in-loop (HIL) experiments show that the proposed methodology can effectively guarantee the stability of the vehicle lateral motion control while obviously declining the network congestion

    Speed Synchronization Control of Integrated Motor–Transmission Powertrain over CAN through Active Period-Scheduling Approach

    No full text
    This paper deals with the speed synchronization control of integrated motor–transmission (IMT) powertrain systems in pure electric vehicles (EVs) over a controller area network (CAN) subject to both network-induced delays and network congestion. A CAN has advantages over point-to-point communication; however, it imposes network-induced delays and network congestion into the control system, which can deteriorate the shifting quality and make system integration difficult. This paper presents a co-design scheme combining active period scheduling and discrete-time slip mode control (SMC) to deal with both network-induced delays and network congestion of the CAN, which improves the speed synchronization control for high shifting quality and prevents network congestion for the system’s integration. The results of simulations and hardware-in-loop experiments show the effectiveness of the proposed scheme, which can ensure satisfactory speed synchronization performance while significantly reducing the network’s utilization

    Cellulose-based functional gels and applications in flexible supercapacitors

    No full text
    In order to resolve the global crisis of fossil energy shortage and climate warming, the development of efficient energy storage devices is a significant topic at present. Supercapacitors as the novel type of energy storage devices have the unique advantages, including the fast charging/discharging behaviors, high-energy/power density, and stable cycling performance. Compared with traditional supercapacitors, flexible supercapacitors are environmentally friendly, light weight, small size and high safety. Therefore, flexible supercapacitors have a wide application prospect in emerging electronic devices. Due to its flexibility, biocompatibility, and structure designability, cellulose and its gel materials are gradually used as electrodes, separators and electrolytes in flexible supercapacitors. Several construction processes at molecular scale for high-performance cellulose gels are summarized. Meanwhile, this review covers the recent progress of developing the flexible supercapacitors and all-in-one supercapacitors based on cellulose functional gels. We finally discussed the potential challenges and opportunities for cellulose and its derived materials in new-style flexible supercapacitors and other electronic devices
    • …
    corecore