78 research outputs found

    ZnO nanoparticle growth on single-walled carbon nanotubes by atomic laye r deposition and a consequent lifetime elongation of nanotube field emission emission

    Get PDF
    ZnO nanoparticles were grown on single-walled carbon nanotubes (SWNTs) by atomic layer deposition using diethylzinc (DEZ) and water. The athors discuss that, because of chemical inertness of nanotubes to DEZ and water molecules, such nanoparticles are not likely to grow on the wall of clean and perfect nanotubes. Rather, the growth of ZnO nanoparticles should be attributed to imperfection of nanotubes, such as defects and carbonaceous impurities. Lifetime of field emission from SWNTs with the ZnO nanoparticles is 2.5 times longer than that from the as-grown nanotubes. It is thought that the protection of the defects or impurities by ZnO nanoparticles mainly contributed to the improvement of the field emission lifetime from SWNTs.open262

    Nonlocal Detection of Interlayer Three-Magnon Coupling

    Get PDF
    A leading nonlinear effect in magnonics is the interaction that splits a high-frequency magnon into two low-frequency magnons with conserved linear momentum. Here, we report experimental observation of nonlocal three-magnon scattering between spatially separated magnetic systems, viz. a CoFeB nanowire and a yttrium iron garnet (YIG) thin film. Above a certain threshold power of an applied microwave field, a CoFeB Kittel magnon splits into a pair of counterpropagating YIG magnons that induce voltage signals in Pt electrodes on each side, in excellent agreement with model calculations based on the interlayer dipolar interaction. The excited YIG magnon pairs reside mainly in the first excited (n=1) perpendicular standing spin-wave mode. With increasing power, the n=1 magnons successively scatter into nodeless (n=0) magnons through a four-magnon process. Our results demonstrate nonlocal detection of two separately propagating magnons emerging from one common source that may enable quantum entanglement between distant magnons for quantum information applications.</p

    Dense sampling of bird diversity increases power of comparative genomics

    Get PDF
    © 2020, The Author(s). Whole-genome sequencing projects are increasingly populating the tree of life and characterizing biodiversity1–4. Sparse taxon sampling has previously been proposed to confound phylogenetic inference5, and captures only a fraction of the genomic diversity. Here we report a substantial step towards the dense representation of avian phylogenetic and molecular diversity, by analysing 363 genomes from 92.4% of bird families—including 267 newly sequenced genomes produced for phase II of the Bird 10,000 Genomes (B10K) Project. We use this comparative genome dataset in combination with a pipeline that leverages a reference-free whole-genome alignment to identify orthologous regions in greater numbers than has previously been possible and to recognize genomic novelties in particular bird lineages. The densely sampled alignment provides a single-base-pair map of selection, has more than doubled the fraction of bases that are confidently predicted to be under conservation and reveals extensive patterns of weak selection in predominantly non-coding DNA. Our results demonstrate that increasing the diversity of genomes used in comparative studies can reveal more shared and lineage-specific variation, and improve the investigation of genomic characteristics. We anticipate that this genomic resource will offer new perspectives on evolutionary processes in cross-species comparative analyses and assist in efforts to conserve species

    Optimized (2, 4) Stencil Runge–Kutta ADE-ADI FDTD With Application to Plasma

    No full text

    Design of a Novel Drug Delivery Nanosystem that Simultaneously Realizes Real‐Time Tracing and Drug Delivery Across the Blood–Brain Barrier

    No full text
    Abstract Acute encephalitis is a brain infection that can harm the nervous system if not recognized and treated promptly. However, the presence of the blood–brain barrier restricts therapeutic agent distribution from the bloodstream to the brain parenchyma, severely restricting effective therapy for this disease. Herein, a novel drug delivery system based on a macrophage (RAW 264.7 cells) artifactual diagnostic and therapeutic nanoparticles (IPD@RAW) drug‐loading approach is presented, which exploits RAW cells' ability to cross the blood–brain barrier and go toward inflammation, and efficiently realizes the targeted enrichment of diagnostic and therapeutic nanoparticles at the site of inflammation in the brain. This nano‐drug‐carrying technology can accurately depict the degree of inflammation in real time for an extended period due to the significant penetration depth and high signal‐to‐noise ratio of near‐infrared (NIR) imaging. Meanwhile, the modified polydopamine can trigger the controlled release of anti‐inflammatory drugs through photothermal conversion under NIR irradiation to reduce the expression of cellular inflammatory factors, such as TNF‐α, IL‐6, and IL‐1ÎČ, and alleviate the brain damage due to secretion of this inflammatory factor. As a result, this drug delivery system provides a reliable tool for overcoming the blood–brain barrier to achieve early diagnosis and treatment of acute encephalitis

    Pyrolysis of Huadian oil shale under catalysis of shale ash

    No full text
    The influence of shale ash on the pyrolysis of Huadian oil shale was investigated. It was found that under the catalysis of shale ash, aliphatics in shale oil were partially converted to aromatics, and the long-chain aliphatics were converted to shorter ones. This effect could be improved by increased content of shale ash or by augmented temperature. Beyond the Diels-Alder reaction for the formation of aromatics, a novel reaction route of cyclization of aliphatics followed by dehydrogenation to aromatics was proposed. The component of CaO in shale ash plays an important role to the general performance of shale ash. (C) 2016 Elsevier B.V. All rights reserved.</p

    Brain gliomas: Diagnostic and therapeutic issues and the prospects of drug-targeted nano-delivery technology

    No full text
    Glioma is the most common intracranial malignant tumor, with severe difficulty in treatment and a low patient survival rate. Due to the heterogeneity and invasiveness of tumors, lack of personalized clinical treatment design, and physiological barriers, it is often difficult to accurately distinguish gliomas, which dramatically affects the subsequent diagnosis, imaging treatment, and prognosis. Fortunately, nano-delivery systems have demonstrated unprecedented capabilities in diagnosing and treating gliomas in recent years. They have been modified and surface modified to efficiently traverse BBB/BBTB, target lesion sites, and intelligently release therapeutic or contrast agents, thereby achieving precise imaging and treatment. In this review, we focus on nano-delivery systems. Firstly, we provide an overview of the standard and emerging diagnostic and treatment technologies for glioma in clinical practice. After induction and analysis, we focus on summarizing the delivery methods of drug delivery systems, the design of nanoparticles, and their new advances in glioma imaging and treatment in recent years. Finally, we discussed the prospects and potential challenges of drug-delivery systems in diagnosing and treating glioma
    • 

    corecore