39 research outputs found

    Allergens from Edible Insects: Cross-reactivity and Effects of Processing

    Get PDF
    Purpose of Review The recent introduction of edible insects in Western countries has raised concerns about their safety in terms of allergenic reactions. The characterization of insect allergens, the sensitization and cross-reactivity mechanisms, and the effects of food processing represent crucial information for risk assessment. Recent Findings Allergic reactions to different insects and cross-reactivity with crustacean and inhalant allergens have been described, with the identification of new IgE-binding proteins besides well-known pan-allergens. Depending on the route of sensitization, different potential allergens seem to be involved. Food processing may affect the solubility and the immunoreactivity of insect allergens, with results depending on species and type of proteins. Chemical/enzymatic hydrolysis, in some cases, abolishes immunoreactivity. Summary More studies based on subjects with a confirmed insect allergy are necessary to identify major and minor allergens and the role of the route of sensitization. The effects of processing need to be further investigated to assess the risk associated with the ingestion of insect-containing food products

    A Novel Isoallergen Dau c 1.0401 in Carrot : Stability, Allergenicity, and Comparison with Other Isoallergens

    Get PDF
    SCOPE: Around 25% of food allergic persons in Central Europe suffer from carrot allergy caused by the major carrot allergen Dau c 1. Three different isoallergens, Dau c 1.01, Dau c 1.02 and Dau c 1.03 are identified. However, information about the qualitative and quantitative composition of natural (n)Dau c 1 is scarce. METHODS AND RESULTS: The new carrot allergen Dau c 1.0401 is identified on the mRNA and protein level by RT-PCR and mass spectrometry. It displays only around 60% sequence identity to the other known Dau c 1 isoallergens. NMR and CD-spectra are typical for a well-folded protein containing both α-helices and β-strands. It showed a poor refolding capacity after incubation at 95 °C. IgE-binding is impaired in immunoblots, whereas in inhibition assays IgE binding to soluble Dau c 1.0401 is detected and it clearly provoked a response in mediator release assays. CONCLUSION: Dau c 1.0401 is a new isoallergen which contributes to the allergenicity of carrots. The absence of immunoreactivity in immobilized assays indicates that IgE binding is impaired when the protein is blotted on a solid phase. Altogether, the results point out that its allergenicity can be reduced upon carrot processing

    Food Processing does not Abolish the Allergenicity of the Carrot Allergen Dau c 1 : Influence of pH, Temperature and the Food Matrix

    Get PDF
    SCOPE: The major carrot allergen Dau c 1 belongs to the group of pathogenesis related class 10 (PR-10) proteins and is homologous to the birch pollen allergen Bet v 1. In contrast to most other PR-10 allergens, Dau c 1 can elicit Bet v 1 independent sensitization. Although Dau c 1 is considered heat labile, allergic reactions against cooked carrots are possible. METHODS AND RESULTS: The pH and temperature stability as well as the allergenic potential before and after treatment of purified natural (n) Dau c 1 and different recombinant (r) isoallergens is investigated: rDau c 1.0104, rDau c 1.0105, rDau c 1.0201, rDau c 1.0301. All proteins except rDau c 1.0201 are able to refold at physiological pH. pH conditions around the pI (4.4–5.5) or the presence of the carrot matrix reduce the refolding capacity. Below the pI, most isoallergens are heat resistant and still able to cause mediator release, indicating allergenicity. Moreover, cooked carrot extract is still able to provoke mediator release due to remaining soluble Dau c 1. CONCLUSION: Patients allergic to carrots should avoid processed carrot containing foodstuff because heating or pH treatment do not completely abolish the allergenicity of Dau c 1

    Identification and characterization of IgE‐reactive proteins and a new allergen (Cic a 1.01) from chickpea (Cicer arietinum)

    Get PDF
    Chickpea (Cicer arietinum) allergy has frequently been reported particularly in Spain and India. Nevertheless, chickpea allergens are poorly characterized. The authors aim to identify and characterize potential allergens from chickpea. Candidate proteins are selected by an in silico approach or immunoglobuline E (IgE)-testing. Potential allergens are prepared as recombinant or natural proteins and characterized for structural integrity by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), circular dichroism (CD)-spectroscopy, and mass spectrometry (MS) analysis. IgE-sensitization pattern of Spanish chickpea allergic and German peanut and birch pollen sensitized patients are investigated using chickpea extracts and purified proteins. Chickpea allergic patients show individual and heterogeneous IgE-sensitization profiles with extracts from raw and boiled chickpeas. Chickpea proteins pathogenesis related protein family 10 (PR-10), a late embryogenesis abundant protein (LEA/DC-8), and a vicilin-containing fraction, but not 2S albumin, shows IgE reactivity with sera from chickpea, birch pollen, and peanut sensitized patients. Remarkably, allergenic vicilin, DC-8, and PR-10 are detected in the extract of boiled chickpeas. Several IgE-reactive chickpea allergens are identified. For the first time a yet not classified DC-8 protein is characterized as minor allergen (Cic a 1). Finally, the data suggest a potential risk for peanut allergic patients by IgE cross-reactivity with homologous chickpea proteins

    Abstracts from the Food Allergy and Anaphylaxis Meeting 2016

    Get PDF

    Strukturelle Modifikation der Hauptallergene aus Sellerie und Karotte zur Reduktion der allergenen Reaktivität und Verwendung als mögliche Immuntherapeutika

    No full text
    Eine spezifische Immuntherapie der Allergie, wie sie für die Pollen- und Bienengiftallergie angewandt wird, ist für Nahrungsmittelallergien wegen des hohen Risikos lebensbedrohlicher Nebenwirkungen und fehlender Wirksamkeit nicht etabliert. Somit bleibt vielen Nahrungsmittelallergikern nur die Vermeidung der allergieauslösenden Lebensmittel zur Prävention allergischer Reaktionen. Neuartige Ansätze zur Immuntherapie von Allergien beschreiben unter anderem die Verwendung sogenannter hypoallergener Proteine. Diese sind meist Allergene, deren Struktur dahingehend verändert wurde, dass sie trotz intakter Immunogenität eine reduzierte IgE-Bindungseigenschaft und damit eine verminderte Allergenität aufweisen. Studien am Hauptallergen der Birke haben gezeigt, dass sowohl die Mutation von IgE relevanten Epitopen, als auch Multimerisierungen der Birkenpollenallergene zu solchen Hypoallergenen führen. Mit dieser Arbeit sollte untersucht werden, inwieweit sich solche gezielten Mutationen und Oligomerisierungen auf die Hauptallergene von Sellerie und Karotte übertragen lassen. Ein weiterer Punkt der Studie lag darin, zu untersuchen, ob Oligomerisierung allein oder in Kombination mit Mutationen einen größeren Einfluss auf die immunogenen Eigenschaften bewirkt. Wichtig für die Konzeption hypoallergener Proteine ist das Wissen, um wichtige IgE bindende Epitope auf Allergenen. Für das Hauptallergen aus Birke (Bet v 1) ist die exponierte P-Loop-Region als wichtiges Epitop beschrieben. Die Sellerieallergie ist in Mitteleuropa oft auf eine IgE-Kreuzreaktivität mit Bet v 1 zurückzuführen, weshalb auch das Hauptallergen aus Sellerie (Api g 1), von welchem zwei Isoformen beschrieben sind, näher im Bereich der P-Loop-Region untersucht wurde. Die in dieser Arbeit als stärker IgE bindende bestätigte Isoform Api g 1.01 zeigt allerdings genau in dieser Region eine wichtige Abweichung von Bet v 1, weshalb eine Mutante hergestellt wurde, welche in diesem Bereich dem Bet v 1 angepasst wurde. Mit Hilfe von IgE-Bindungsstudien konnte gezeigt werden, dass diese Veränderung zu einer Verstärkung der Bindung von IgE aus Seren von Birkenpollenallergikern führte, während Seren von Sellerieallergikern, die ausschließlich auf die Isoform Api g 1.01 sensibilisiert waren, eher eine unveränderte IgE-Bindung an diese Mutante zeigten. Seren von Patienten, die auf beide Isoformen sensibilisiert waren, zeigten wie die Birkenpollenallergiker eine erhöhte Reaktivität auf diese Mutante. Da die zweite Isoform, Api g 1.02, allerdings nur eine geringe Relevanz bei der Sellerieallergie spielt, kann durch die Ergebnisse mit dieser Mutante gefolgert werden, dass die P-Loop-Region für die birkenpollenassoziierte Sellerieallergie ein weniger wichtiges IgE-Epitop ist, als für das homologe Birkenpollenallergen. Die gerichtete Mutation der P-Loop-Region kann somit bei Api g 1.01 nicht als Strategie zur Herstellung hypoallergener Derivate in Betracht gezogen werden. Weiterführende Studien bezüglich der relevanten IgE-Epitope des Hauptallergens aus Sellerie sind demnach nötig. Ein weiterer wichtiger Ansatz zur Herstellung hypoallergener Mutanten ist die Zerstörung der dreidimensionalen Struktur von allergenen Proteinen, so dass keine Konformationsepitope mehr vorhanden sind, welche hauptsächlich für die IgE-Bindung verantwortlich sind. In der Regel sind solche Proteine nicht mehr in der Lage IgE im Patientenserum zu binden, können aber in vivo eine zelluläre Immunogenität auslösen. Dazu wurden neben den jeweiligen Isoformen der Hauptallergene von Sellerie (Api g 1) und Karotte (Dau c 1) auch 111P-Mutanten dieser Proteine rekombinant hergestellt, welche eine zerstörte Sekundärstruktur aufwiesen. Sowohl für Sellerie als auch für Karotte, waren die mutierten Proteine nicht mehr in der Lage, die jeweiligen spezifischen IgE-Antikörper in Patientenserum zu erkennen. Sie wiesen somit eine reduzierte Allergenität auf, was sie zu möglichen geeigneten Kandidaten für eine Immuntherapie machen. Wichtig für einen Mechanismus zur effektiven Immuntherapie ist aber auch die Induktion von blockierenden IgG-Antikörpern, welche unter anderem das Allergen binden und somit verhindern, dass es zu einer Kreuzvernetzung von IgE kommt, welches über den FceRI-Rezeptor auf der Oberfläche von Mastzellen gebunden ist. In dieser Studie konnte mittels eines Mausmodells in vivo gezeigt werden, dass die beiden Isoformen Dau c 1.01 und Dau c 1.02 des Hauptallergens aus Karotte, welche keine intakten IgE-Epitope mehr aufwiesen trotzdem noch in der Lage waren solche blockierenden Antikörper zu induzieren. Die Funktionalität dieser Antikörper mit IgE um das Allergen zu konkurrieren, wurde mittels Inhibition der Bindung von humanem IgE an das entsprechende Allergen durch Zugabe der entsprechenden Mausseren, welche die gebildeten IgG Antikörper enthielten, nachgewiesen und war vergleichbar mit der Inhibitionswirkung von Seren der Mäuse, die mit den Wildtyp-Allergenen immunisiert wurden. Wurden Proteine eingesetzt, die nicht nur eine zerstörte Struktur aufwiesen, sondern auch noch als Dimer der beiden Dau c 1 Isoformen mit zerstörter Struktur vorlagen (Dau c 1FP111P), so konnte eine verstärkte Induktion von blockierenden Antikörpern mit erhöhter IgE-Inhibitionswirkung beobachtet werden. Somit ist die Multimerisierung von Allergenen bei gleichzeitiger Zerstörung der Struktur ein geeigneter Ansatz zur Herstellung von hypoallergenen Proteinen. Da Immuntherapeutika möglichst nicht in der Lage sein sollten allergische Reaktionen auszulösen, indem sie mit bestehenden IgE-Antikörpern kreuzreagieren, wurden die hier untersuchten hypoallergenen Proteine auch in Kreuzreaktivitätsstudien eingesetzt. Diese haben gezeigt, dass nur hohe Immunisierungsdosen zur Induktion von IgE führten, welches mit den Wildtyp-Allergenen kreuzreaktiv war. Da aber zur Induktion von blockierenden IgG-Antikörpern bereits eine geringe Dosis an verändertem Allergen ausreichend war, ist dies zu vernachlässigen. Mittels Untersuchungen von IgE-bindenden-Epitopen und gezielter Veränderung von Allergenen, konnte in dieser Studie gezeigt werden, dass nicht nur die Zerstörung der Struktur oder die Oligomerisierung von Allergenen, sondern die Kombination der beiden Methoden eine geeignete Strategie zur Entwicklung neuer Reagenzien für die klassische spezifische Immuntherapie der Lebensmittelallergie darstellen kann

    Allergenic Properties and Molecular Characteristics of PR-1 Proteins

    No full text
    Only a small fraction of proteins in plants and animals are classified as allergens. The allergenic properties are frequently attributed to certain functional characteristics of the proteins, such as a role in the plant defense against biotic and abiotic stress, to achieve the systematic acquired resistance. In line with this, eight members out of 17 functional pathogenesis-related (PR) protein families have been characterized as allergens. The present review summarizes the molecular features and allergenic significance of allergens of the PR-1 family. Not many allergens have been identified as belonging to this protein family, with most of them having a pollen origin, like mugwort or Bermuda grass. Molecular and structural features of allergenic PR-1 proteins are discussed and attributed to their IgE-reactive properties, clinical manifestation, and cross-reactivity among different foods and inhalants
    corecore