57 research outputs found

    Reliability Evaluation of RC Columns with Wind-Dominated Combination Considering Random Biaxial Eccentricity

    Get PDF
    Reinforced concrete (RC) columns in frame structures are often subjected to biaxial bending and axial compression under both horizontal loads (e.g., wind load in a given direction) and vertical loads (e.g., gravity). Owing to the random properties of loads, it is important to consider the uncertainties of biaxial eccentricity. However, the fixed eccentricity criterion used in the conventional design methods cannot capture the effects of random biaxial eccentricity on reliability. Based on the reciprocal load method, the reliability is analyzed for columns with both the fixed eccentricity and random eccentricity criteria by Monte Carlo simulation. It is demonstrated that random biaxial eccentricity has a significant influence on the reliability of RC columns with wind-dominated combination

    Interaction of serum vitamin B12 and folate with MTHFR genotypes on risk of ischemic stroke

    Get PDF
    ObjectiveWe evaluated the interaction of serum folate and vitamin B12 with methylenetetrahydrofolate reductase (MTHFR) C677T genotypes on the risk of first ischemic stroke and on the efficacy of folic acid treatment in prevention of first ischemic stroke.MethodsA total of 20,702 hypertensive adults were randomized to a double-blind treatment of daily enalapril 10 mg and folic acid 0.8 mg or enalapril 10 mg alone. Participants were followed up every 3 months.ResultsMedian values of folate and B12 concentrations at baseline were 8.1 ng/mL and 280.2 pmol/L, respectively. Over a median of 4.5 years, among those not receiving folic acid, participants with baseline serum B12 or serum folate above the median had a significantly lower risk of first ischemic stroke (hazard ratio [HR], 0.74; 95% confidence interval [CI], 0.57-0.96), especially in those with MTHFR 677 CC genotype (wild-type) (HR, 0.49; 95% CI, 0.31-0.78). Folic acid treatment significantly reduced the risk of first ischemic stroke in participants with both folate and B12 below the median (2.3% in enalapril-folic acid group vs 3.6% in enalapril-only group; HR, 0.62; 95% CI, 0.46-0.86), particularly in MTHFR 677 CC carriers (1.6% vs 4.9%; HR, 0.24; 95% CI, 0.11-0.55). However, TT homozygotes responded better with both folate and B12 levels above the median (HR, 0.28; 95% CI, 0.10-0.75).ConclusionsThe risk of first ischemic stroke was significantly higher in hypertensive patients with low levels of both folate and B12. Effect of folic acid treatment was greatest in patients with low folate and B12 with the CC genotype, and with high folate and B12 with the TT genotype

    Folic acid therapy reduces the first stroke risk associated with hypercholesterolemia among hypertensive patients

    Get PDF
    Background and Purpose - We sought to determine whether folic acid supplementation can independently reduce the risk of first stroke associated with elevated total cholesterol levels in a subanalysis using data from the CSPPT (China Stroke Primary Prevention Trial), a double-blind, randomized controlled trial. Methods - A total of 20 702 hypertensive adults without a history of major cardiovascular disease were randomly assigned to a double-blind daily treatment of an enalapril 10-mg and a folic acid 0.8-mg tablet or an enalapril 10-mg tablet alone. The primary outcome was first stroke. Results - The median treatment duration was 4.5 years. For participants not receiving folic acid treatment (enalapril-only group), high total cholesterol (≥ 200 mg/dL) was an independent predictor of first stroke when compared with low total cholesterol (\u3c200 mg/dL; 4.0% versus 2.6%; hazard ratio, 1.52; 95% confidence interval, 1.18-1.97; P=0.001). Folic acid supplementation significantly reduced the risk of first s roke among participants with high total cholesterol (4.0% in the enalapril-only group versus 2.7% in the enalapril-folic acid group; hazard ratio, 0.69; 95% confidence interval, 0.56-0.84 P\u3c0.001; number needed to treat, 78; 95% confidence interval, 52-158), independent of baseline folate levels and other important covariates. By contrast, among participants with low total cholesterol, the risk of stroke was 2.6% in the enalapril-only group versus 2.5% in the enalapril-folic acid group (hazard ratio, 1.00; 95% confidence interval, 0.75-1.30; P=0.982). The effect was greater among participants with elevated total cholesterol (P for interaction=0.024). Conclusions - Elevated total cholesterol levels may modify the benefits of folic acid therapy on first stroke. Folic acid supplementation reduced the risk of first stroke associated with elevated total cholesterol by 31% among hypertensive adults without a history of major cardiovascular diseases

    Impact of the Arbuscular Mycorrhizal Fungus Funneliformis mosseae on the Physiological and Defence Responses of Canna indica to Copper Oxide Nanoparticles Stress

    No full text
    Copper oxide nanoparticles (nano-CuO) are recognized as an emerging pollutant. Arbuscular mycorrhizal fungi (AMF) can mitigate the adverse impacts of various pollutants on host plants. However, AMF’s mechanism for alleviating nano-CuO phytotoxicity remains unclear. The goal of this study was to evaluate how AMF inoculations affect the physiological features of Canna indica seedlings exposed to nano-CuO stress. Compared with the non-AMF inoculated treatment, AMF inoculations noticeably improved plant biomass, mycorrhizal colonization, leaf chlorophyll contents, and the photosynthetic parameters of C. indica under nano-CuO treatments. Moreover, AMF inoculation was able to significantly mitigate nano-CuO stress by enhancing antioxidant enzyme activities and decreasing ROS levels in the leaves and roots of C. indica, thus increasing the expression of genes involved in the antioxidant response. In addition, AMF inoculation reduced the level of Cu in seedlings and was associated with an increased expression of Cu transport genes and metallothionein genes. Furthermore, AMF inoculations increased the expression levels of organic acid metabolism-associated genes while facilitating organic acid secretion, thus reducing the accumulation of Cu. The data demonstrate that AMF–plant symbiosis is a feasible biocontrol approach to remediate nano-CuO pollution

    Cavity reverse expansion considering elastoplastic unloading and application in cast-in-situ bored piles

    No full text
    The construction process of a cast-in-situ bored pile is too complicated to be described by the cavity expansion theory with a single process. An exact unified semi-analytical solution for both cylindrical and spherical cavities reverse expansion after unloading in drained soil is developed. The non-associated Mohr-Coulomb model and definition of logarithmic strain are adopted in the reverse plastic zone. This model can be used to solve the stress and displacement fields of the soil around a bored pile along both the horizontal and depth directions. Parametric analysis shows that the effect of the unloading phase does not change the ultimate pressure of cavity reverse expansion compared with in situ expansion. The cavity cannot re-expand to its initial radius even though the cavity pressure reloads to the initial value. The increase of internal friction angle, cohesion, and Young's modulus has a positive effect on radius recovery, while the dilatancy angle has a negative effect. A simulation of the construction process of cast-in-situ bored piles is presented, where the role of boring, mud wall protection, and concrete placement is defined. An example that describes the stress and displacement fields around a pile shows that the total radial displacement of soil around the pile is dominated by contraction displacement. And it is closely related to depth and horizontal distance. The results of both parameter analysis and example analysis demonstrate that a low reverse cavity pressure corresponds to a stress-reduction area surrounding the cavity
    corecore