2,673 research outputs found

    Linking black-hole growth with host galaxies: The accretion-stellar mass relation and its cosmic evolution

    Full text link
    Previous studies suggest that the growth of supermassive black holes (SMBHs) may be fundamentally related to host-galaxy stellar mass (MM_\star). To investigate this SMBH growth-MM_\star relation in detail, we calculate long-term SMBH accretion rate as a function of MM_\star and redshift [BHAR(M,z)\overline{\rm BHAR}(M_\star, z)] over ranges of log(M/M)=9.5–12\log(M_\star/M_\odot)=\text{9.5--12} and z=0.4–4z=\text{0.4--4}. Our BHAR(M,z)\overline{\rm BHAR}(M_\star, z) is constrained by high-quality survey data (GOODS-South, GOODS-North, and COSMOS), and by the stellar mass function and the X-ray luminosity function. At a given MM_\star, BHAR\overline{\rm BHAR} is higher at high redshift. This redshift dependence is stronger in more massive systems (for log(M/M)11.5\log(M_\star/M_\odot)\approx 11.5, BHAR\overline{\rm BHAR} is three decades higher at z=4z=4 than at z=0.5z=0.5), possibly due to AGN feedback. Our results indicate that the ratio between BHAR\overline{\rm BHAR} and average star formation rate (SFR\overline{\rm SFR}) rises toward high MM_\star at a given redshift. This BHAR/SFR\overline{\rm BHAR}/\overline{\rm SFR} dependence on MM_\star does not support the scenario that SMBH and galaxy growth are in lockstep. We calculate SMBH mass history [MBH(z)M_{\rm BH}(z)] based on our BHAR(M,z)\overline{\rm BHAR}(M_\star, z) and the M(z)M_\star(z) from the literature, and find that the MBHM_{\rm BH}-MM_\star relation has weak redshift evolution since z2z\approx 2. The MBH/MM_{\rm BH}/M_\star ratio is higher toward massive galaxies: it rises from 1/5000\approx 1/5000 at logM10.5\log M_\star\lesssim 10.5 to 1/500\approx 1/500 at logM11.2\log M_\star \gtrsim 11.2. Our predicted MBH/MM_{\rm BH}/M_\star ratio at high MM_\star is similar to that observed in local giant ellipticals, suggesting that SMBH growth from mergers is unlikely to dominate over growth from accretion.Comment: 27 pages, 21 figures, 2 tables; MNRAS accepte

    Optical signatures of quantum phase transitions in a light-matter system

    Get PDF
    Information about quantum phase transitions in conventional condensed matter systems, must be sought by probing the matter system itself. By contrast, we show that mixed matter-light systems offer a distinct advantage in that the photon field carries clear signatures of the associated quantum critical phenomena. Having derived an accurate, size-consistent Hamiltonian for the photonic field in the well-known Dicke model, we predict striking behavior of the optical squeezing and photon statistics near the phase transition. The corresponding dynamics resemble those of a degenerate parametric amplifier. Our findings boost the motivation for exploring exotic quantum phase transition phenomena in atom-cavity, nanostructure-cavity, and nanostructure-photonic-band-gap systems.Comment: 4 pages, 4 figure

    Measurement of the branching fractions of psi(2S) -> 3(pi+pi-) and J/psi -> 2(pi+pi-)

    Full text link
    Using data samples collected at sqrt(s) = 3.686GeV and 3.650GeV by the BESII detector at the BEPC, the branching fraction of psi(2S) -> 3(pi+pi-) is measured to be [4.83 +- 0.38(stat) +- 0.69(syst)] x 10^-4, and the relative branching fraction of J/psi -> 2(pi+pi-) to that of J/psi -> mu+mu- is measured to be [5.86 +- 0.19(stat) +- 0.39(syst)]% via psi(2S) -> (pi+pi-)J/psi, J/psi -> 2(pi+pi-). The electromagnetic form factor of 3(pi+pi-) is determined to be 0.21 +- 0.02 and 0.20 +- 0.01 at sqrt(s) = 3.686GeV and 3.650GeV, respectively.Comment: 17pages, 7 figures, submitted to Phys. Rev.

    Synthesis of Mesoporous Silica@Co–Al Layered Double Hydroxide Spheres: Layer-by-Layer Method and Their Effects on the Flame Retardancy of Epoxy Resins

    Get PDF
    Hierarchical mesoporous silica@Co–Al layered double hydroxide (m-SiO2@Co–Al LDH) spheres were prepared through a layer-by-layer assembly process, in order to integrate their excellent physical and chemical functionalities. TEM results depicted that, due to the electrostatic potential difference between m-SiO2 and Co–Al LDH, the synthetic m-SiO2@Co–Al LDH hybrids exhibited that m-SiO2 spheres were packaged by the Co–Al LDH nanosheets. Subsequently, the m-SiO2@Co–Al LDH spheres were incorporated into epoxy resin (EP) to prepare specimens for investigation of their flame-retardant performance. Cone results indicated that m-SiO2@Co–Al LDH incorporated obviously improved fire retardant of EP. A plausible mechanism of fire retardant was hypothesized based on the analyses of thermal conductivity, char residues, and pyrolysis fragments. Labyrinth effect of m-SiO2 and formation of graphitized carbon char catalyzed by Co–Al LDH play pivotal roles in the flame retardance enhancement

    Measurements of J/psi decays into phi pi^0, phi eta, and phi eta^prime

    Full text link
    Based on 5.8x10^7 J/psi events detected in BESII, the branching fractions of J/psi--> phi eta and phi eta^prime are measured for different eta and eta^prime decay modes. The results are significantly higher than previous measurements. An upper limit on B(J/psi--> phi pi^0) is also obtained.Comment: 9 pages, 10 figure

    Measurement of the chi_{c2} Polarization in psi(2S) to gamma chi_{c2}

    Full text link
    The polarization of the chi_{c2} produced in psi(2S) decays into gamma chi_{c2} is measured using a sample of 14*10^6 psi(2S) events collected by BESII at the BEPC. A fit to the chi_{c2} production and decay angular distributions in psi(2S) to gamma chi_{c2}, chi_{c2} to pi pi and KK yields values x=A_1/A_0=2.08+/-0.44 and y=A_2/A_0=3.03 +/-0.66, with a correlation rho=0.92 between them, where A_{0,1,2} are the chi_{c2} helicity amplitudes. The measurement agrees with a pure E1 transition, and M2 and E3 contributions do not differ significantly from zero.Comment: 6 pages, 4 figures, 1 tabl

    Observation of p pbar pi^0 and p pbar eta in psi' decays

    Full text link
    The processes psi'-->p pbar pi^0 and psi'-->p pbar eta are studied using a sample of 14 million psi' decays collected with the Beijing Spectrometer at the Beijing Electron-Positron Collider. The branching fraction of psi'-->p pbar pi^0 is measured with improved precision as (13.2\pm 1.0\pm 1.5)\times 10^{-5}, and psi'-->p pbar eta is observed for the first time with a branching fraction of (5.8\pm 1.1\pm 0.7)\times 10^{-5}, where the first errors are statistical and the second ones are systematic.Comment: 15 pages, 8 figures and 3 table

    Measurement of the final states ωπ0\omega \pi^0, ρη\rho \eta, and ρη\rho \eta^{'} from \psip electromagnetic decays and \ee annihilations

    Full text link
    Cross sections and form factors for \ee \to \wpi, ρη\rho\eta, and \rho\etap at center of mass energies of 3.650, 3.686, and 3.773 GeV are measured using data samples collected with the BESII detector at the BEPC. Also, the branching fractions of \psi(2S) \rar \wpi, ρη\rho\eta, and \rho\etap are determined to be (1.870.62+0.68±0.28)×105(1.87^{+0.68}_{-0.62}\pm0.28)\times 10^{-5}, (1.780.62+0.67±0.17)×105(1.78^{+0.67}_{-0.62}\pm0.17)\times 10^{-5}, and (1.871.11+1.64±0.33)×105(1.87^{+1.64}_{-1.11}\pm0.33)\times10^{-5}, respectively.Comment: 8 pages, 4 figures, 4 table

    Arecibo and FAST Timing Follow-up of twelve Millisecond Pulsars Discovered in Commensal Radio Astronomy FAST Survey

    Full text link
    We report the phase-connected timing ephemeris, polarization pulse profiles, Faraday rotation measurements, and Rotating-Vector-Model (RVM) fitting results of twelve millisecond pulsars (MSPs) discovered with the Five-hundred-meter Aperture Spherical radio Telescope (FAST) in the Commensal radio Astronomy FAST survey (CRAFTS). The timing campaigns were carried out with FAST and Arecibo over three years. Eleven of the twelve pulsars are in neutron star - white dwarf binary systems, with orbital periods between 2.4 and 100 d. Ten of them have spin periods, companion masses, and orbital eccentricities that are consistent with the theoretical expectations for MSP - Helium white dwarf (He WD) systems. The last binary pulsar (PSR J1912-0952) has a significantly smaller spin frequency and a smaller companion mass, the latter could be caused by a low orbital inclination for the system. Its orbital period of 29 days is well within the range of orbital periods where some MSP - He WD systems have shown anomalous eccentricities, however, the eccentricity of PSR J1912-0952 is typical of what one finds for the remaining MSP - He WD systems.Comment: 11 pages, 5 figures, MNRAS accepte

    Observation of a near-threshold enhancement in th p pbar mass spectrum from radiative J/psi-->gamma p pbar decays

    Full text link
    We observe a narrow enhancement near 2mp in the invariant mass spectrum of ppbar pairs from radiative J/psi-->gamma ppbar decays. The enhancement can be fit with either an S- or P-wave Breit Wigner fuction. In the case of the S-wave fit, the peak mass is below the 2mp threshold and the full width is less than 30 MeV. These mass and width values are not consistent with the properties of any known meson resonance.Comment: 5 pages, 4 figures, submitted to Phys. Rev. Let
    corecore