1,061 research outputs found

    Nonleptonic charmless two-body B decays involving tensor mesons in the covariant light-front approach

    Full text link
    We reanalyzed nonleptonic charmless two-body B decays involving tensor mesons in final state motivated by the disagreement between current experimental information and theoretical predictions obtained in ISGW2 model for some B(B→P(V)T)\mathcal{B}(B \to P(V)T) (where PP, VV and TT denote a pseudoscalar, a vector and a tensor meson, respectively). We have calculated branching ratios of charmless B→PTB \to PT and B→VTB\to VT modes, using B→TB \to T form factors obtained in the covariant light-front (CLF) approach and the full effective Hamiltonian. We have considered the η−η′\eta-\eta^{\prime} two-mixing angle formalism for B→η(′)TB \to \eta^{(\prime)}T channels, which increases branching ratios for these processes. Our predictions obtained in the CLF approach are, in general, greater than those computed in the framework of the ISGW2 model and more favorable with the available experimental data. Specifically, our results for exclusive channels B→ηK2∗(1430)B \to \eta K_{2}^{*}(1430) and B→ϕK2∗(1430)B \to \phi K_{2}^{*}(1430) are in agreement with recent experimental information.Comment: 10 page

    Nonleptonic charmless two-body B→ATB \to AT decays

    Full text link
    In this work we have studied hadronic charmless two-body B decays involving p-wave mesons in final state. We have calculated branching ratios of B→ATB\to AT decays (where AA and TT denotes a 3P1^3P_1 axial-vector and a tensor meson, respectively), using B→TB \to T form factors obtained in the covariant light-front (CLF) approach, and the full effective Hamiltonian. We have obtained that B(B0→a1+a2−)=42.47×10−6\mathcal{B}(B^{0} \to a_{1}^{+}a_{2}^{-}) =42.47 \times10^{-6}, B(B+→a1+a20)=22.71×10−6\mathcal{B}(B^{+} \to a_{1}^{+}a_{2}^{0}) = 22.71 \times10^{-6}, B(B→f1K2∗)=(2.8−4)×10−6\mathcal{B}(B \to f_{1}K_{2}^{*}) = (2.8-4) \times 10^{-6} (with f1=,f1(1285),f1(1420)f_{1}=, f_{1}(1285),f_{1}(1420)) for θ3P1=53.2∘\theta_{^{3}P_{1}} = 53.2^{\circ}, B(B→f1(1420)K2∗)=(5.91−6.42)×10−6\mathcal{B}(B \to f_{1}(1420)K_{2}^{*}) = (5.91-6.42) \times 10^{-6} with θ3P1=27.9∘\theta_{^{3}P_{1}} = 27.9^{\circ}, B(B→K1a2)=(1.7−5.7)[1−9.3]×10−6\mathcal{B}(B \to K_{1}a_{2})= (1.7 - 5.7) [1-9.3] \times10^{-6} for θK1=−37∘[−58∘]\theta_{K_{1}} = -37^{\circ} [-58^{\circ}] where K1=K1(1270),K1(1400)K_1 = K_1(1270), K_1(1400). It seems that these decays can be measured in experiments at BB factories. Additionally, we have found that B(B→K1(1270)a2)/B(B→K1(1400)a2)\mathcal{B}(B \to K_{1}(1270)a_{2})/\mathcal{B}(B \to K_{1}(1400)a_{2}) and B(B→f1(1420)K2∗)/B(B→f1(1285)K2∗)\mathcal{B}(B \to f_1(1420)K_{2}^{*})/\mathcal{B}(B \to f_1(1285)K_{2}^{*}) ratios could be useful to determine numerical values of mixing angles θK1\theta_{K_{1}} and θ3P1\theta_{^{3}P_{1}}, respectively.Comment: 12 page

    Birthrates and delay times of Type Ia supernovae

    Full text link
    Type Ia supernovae (SNe Ia) play an important role in diverse areas of astrophysics, from the chemical evolution of galaxies to observational cosmology. However, the nature of the progenitors of SNe Ia is still unclear. In this paper, according to a detailed binary population synthesis study, we obtained SN Ia birthrates and delay times from different progenitor models, and compared them with observations. We find that the Galactic SN Ia birthrate from the double-degenerate (DD) model is close to those inferred from observations, while the birthrate from the single-degenerate (SD) model accounts for only about 1/2-2/3 of the observations. If a single starburst is assumed, the distribution of the delay times of SNe Ia from the SD model is a weak bimodality, where the WD + He channel contributes to the SNe Ia with delay times shorter than 100Myr, and the WD + MS and WD + RG channels to those with age longer than 1Gyr.Comment: 11 pages, 2 figures, accepted by Science in China Series G (Dec.30, 2009

    BB-to-Glueball form factor and Glueball production in BB decays

    Full text link
    We investigate transition form factors of BB meson decays into a scalar glueball in the light-cone formalism. Compared with form factors of BB to ordinary scalar mesons, the BB-to-glueball form factors have the same power in the expansion of 1/mB1/m_B. Taking into account the leading twist light-cone distribution amplitude, we find that they are numerically smaller than those form factors of BB to ordinary scalar mesons. Semileptonic B→GlνˉB\to Gl\bar\nu, B→Gl+l−B\to Gl^+l^- and Bs→Gl+l−B_s\to Gl^+l^- decays are subsequently investigated. We also analyze the production rates of scalar mesons in semileptonic BB decays in the presence of mixing between scalar qˉq\bar qq and glueball states. The glueball production in BcB_c meson decays is also investigated and the LHCb experiment may discover this channel. The sizable branching fraction in Bc→(π+π−)l−νˉB_c\to (\pi^+\pi^-)l^-\bar\nu, Bc→(K+K−)l−νˉB_c\to (K^+K^-)l^-\bar\nu or Bc→(π+π−π+π−)l−νˉB_c\to (\pi^+\pi^-\pi^+\pi^-)l^-\bar\nu could be a clear signal for a scalar glueball state.Comment: 17 pages, 3 figure, revtex

    f(R) Gravities, Killing Spinor Equations, "BPS" Domain Walls and Cosmology

    Full text link
    We derive the condition on f(R) gravities that admit Killing spinor equations and construct explicit such examples. The Killing spinor equations can be used to reduce the fourth-order differential equations of motion to the first order for both the domain wall and FLRW cosmological solutions. We obtain exact "BPS" domain walls that describe the smooth Randall-Sundrum II, AdS wormholes and the RG flow from IR to UV. We also obtain exact smooth cosmological solutions that describe the evolution from an inflationary starting point with a larger cosmological constant to an ever-expanding universe with a smaller cosmological constant. In addition, We find exact smooth solutions of pre-big bang models, bouncing or crunching universes. An important feature is that the scalar curvature R of all these metrics is varying rather than a constant. Another intriguing feature is that there are two different f(R) gravities that give rise to the same "BPS" solution. We also study linearized f(R) gravities in (A)dS vacua.Comment: 37 pages, discussion on gravity trapping in RSII modified, typos corrected, further comments and references added; version to appear in JHE

    A new small-bodied azhdarchoid pterosaur from the Lower Cretaceous of England and its implications for pterosaur anatomy, diversity and phylogeny

    Get PDF
    BACKGROUND: Pterosaurs have been known from the Cretaceous sediments of the Isle of Wight (southern England, United Kingdom) since 1870. We describe the three-dimensional pelvic girdle and associated vertebrae of a small near-adult pterodactyloid from the Atherfield Clay Formation (lower Aptian, Lower Cretaceous). Despite acknowledged variation in the pterosaur pelvis, previous studies have not adequately sampled or incorporated pelvic characters into phylogenetic analyses. METHODOLOGY/PRINCIPAL FINDINGS: The new specimen represents the new taxon Vectidraco daisymorrisae gen. et sp. nov., diagnosed by the presence of a concavity posterodorsal to the acetabulum and the form of its postacetabular process on the ilium. Several characters suggest that Vectidraco belongs to Azhdarchoidea. We constructed a pelvis-only phylogenetic analysis to test whether the pterosaur pelvis carries a useful phylogenetic signal. Resolution in recovered trees was poor, but they approximately matched trees recovered from analyses of total evidence. We also added Vectidraco and our pelvic characters to an existing total-evidence matrix for pterosaurs. Both analyses recovered Vectidraco within Azhdarchoidea. CONCLUSIONS/ SIGNIFICANCE: The Lower Cretaceous strata of western Europe have yielded members of several pterosaur lineages, but Aptian pterosaurs from western Europe are rare. With a pelvis length of 40 mm, the new animal would have had a total length of c. 350 mm, and a wingspan of c. 750 mm. Barremian and Aptian pterodactyloids from western Europe show that small-bodied azhdarchoids lived alongside ornithocheirids and istiodactylids. This assemblage is similar in terms of which lineages are represented to the coeval beds of Liaoning, China; however, the number of species and specimens present at Liaoning is much higher. While the general phylogenetic composition of western European and Chinese communities appear to have been approximately similar, the differences may be due to different palaeoenvironmental and depositional settings. The western Europe pterodactyloid record may therefore be artificially low in diversity due to preservational factors

    The DArk Matter Particle Explorer mission

    Get PDF
    The DArk Matter Particle Explorer (DAMPE), one of the four scientific space science missions within the framework of the Strategic Pioneer Program on Space Science of the Chinese Academy of Sciences, is a general purpose high energy cosmic-ray and gamma-ray observatory, which was successfully launched on December 17th, 2015 from the Jiuquan Satellite Launch Center. The DAMPE scientific objectives include the study of galactic cosmic rays up to ∼10\sim 10 TeV and hundreds of TeV for electrons/gammas and nuclei respectively, and the search for dark matter signatures in their spectra. In this paper we illustrate the layout of the DAMPE instrument, and discuss the results of beam tests and calibrations performed on ground. Finally we present the expected performance in space and give an overview of the mission key scientific goals.Comment: 45 pages, including 29 figures and 6 tables. Published in Astropart. Phy

    Ambipolar ferromagnetism by electrostatic doping of a manganite

    Get PDF
    Complex-oxide materials exhibit physical properties that involve the interplay of charge and spin degrees of freedom. However, an ambipolar oxide that is able to exhibit both electron-doped and hole-doped ferromagnetism in the same material has proved elusive. Here we report ambipolar ferromagnetism in LaMnO3, with electron–hole asymmetry of the ferromagnetic order. Starting from an undoped atomically thin LaMnO3 film, we electrostatically dope the material with electrons or holes according to the polarity of a voltage applied across an ionic liquid gate. Magnetotransport characterization reveals that an increase of either electron-doping or hole-doping induced ferromagnetic order in this antiferromagnetic compound, and leads to an insulator-to-metal transition with colossal magnetoresistance showing electron–hole asymmetry. These findings are supported by density functional theory calculations, showing that strengthening of the inter-plane ferromagnetic exchange interaction is the origin of the ambipolar ferromagnetism. The result raises the prospect of exploiting ambipolar magnetic functionality in strongly correlated electron systems
    • …
    corecore