286,925 research outputs found

    Delay-induced multiple stochastic resonances on scale-free neuronal networks

    Full text link
    We study the effects of periodic subthreshold pacemaker activity and time-delayed coupling on stochastic resonance over scale-free neuronal networks. As the two extreme options, we introduce the pacemaker respectively to the neuron with the highest degree and to one of the neurons with the lowest degree within the network, but we also consider the case when all neurons are exposed to the periodic forcing. In the absence of delay, we show that an intermediate intensity of noise is able to optimally assist the pacemaker in imposing its rhythm on the whole ensemble, irrespective to its placing, thus providing evidences for stochastic resonance on the scale-free neuronal networks. Interestingly thereby, if the forcing in form of a periodic pulse train is introduced to all neurons forming the network, the stochastic resonance decreases as compared to the case when only a single neuron is paced. Moreover, we show that finite delays in coupling can significantly affect the stochastic resonance on scale-free neuronal networks. In particular, appropriately tuned delays can induce multiple stochastic resonances independently of the placing of the pacemaker, but they can also altogether destroy stochastic resonance. Delay-induced multiple stochastic resonances manifest as well-expressed maxima of the correlation measure, appearing at every multiple of the pacemaker period. We argue that fine-tuned delays and locally active pacemakers are vital for assuring optimal conditions for stochastic resonance on complex neuronal networks.Comment: 7 two-column pages, 5 figures; accepted for publication in Chao

    Loss of purity by wave packet scattering at low energies

    Full text link
    We study the quantum entanglement produced by a head-on collision between two gaussian wave packets in three-dimensional space. By deriving the two-particle wave function modified by s-wave scattering amplitudes, we obtain an approximate analytic expression of the purity of an individual particle. The loss of purity provides an indicator of the degree of entanglement. In the case the wave packets are narrow in momentum space, we show that the loss of purity is solely controlled by the ratio of the scattering cross section to the transverse area of the wave packets.Comment: 7 pages, 1 figur

    On the effects of Cosmions upon the structure and evolution of very low mass stars

    Get PDF
    A number of recent studies have suggested that cosmions, or WIMPS, may play an important role in the energetics of the solar interior; in particular, it has been argued that these hypothetical particles may transport sufficient energy within the nuclear-burning solar core so as to depress the solar core temperature to the point of resolving the solar neutrino problem. Solutions to the solar neutrino problem have proven themselves to be quite nonunique, so that it is of some interest whether the cosmion solution can be tested in some independent manner. It is argued that if cosmions solve the solar neutrino problem, then they must also play an important role in the evolution of low mass main sequence stars; and, second, that if they do so, then a simple (long mean free path) model for the interaction of cosmions with baryons leads to changes in the structure of the nuclear-burning core which may be in principal observable. Such changes include suppression of a fully-convective core in very low mass main sequence stars; and a possible thermal runaway in the core of the nuclear burning region. Some of these changes may be directly observable, and hence may provide independent constraints on the properties of the cosmions required to solve the solar neutrino problem, perhaps even ruling them out

    Anomalous heat conduction and anomalous diffusion in nonlinear lattices, single walled nanotubes, and billiard gas channels

    Full text link
    We study anomalous heat conduction and anomalous diffusion in low dimensional systems ranging from nonlinear lattices, single walled carbon nanotubes, to billiard gas channels. We find that in all discussed systems, the anomalous heat conductivity can be connected with the anomalous diffusion, namely, if energy diffusion is σ2(t)=2Dtα(0<α2)\sigma^2(t)\equiv =2Dt^{\alpha} (0<\alpha\le 2), then the thermal conductivity can be expressed in terms of the system size LL as κ=cLβ\kappa = cL^{\beta} with β=22/α\beta=2-2/\alpha. This result predicts that a normal diffusion (α=1\alpha =1) implies a normal heat conduction obeying the Fourier law (β=0\beta=0), a superdiffusion (α>1\alpha>1) implies an anomalous heat conduction with a divergent thermal conductivity (β>0\beta>0), and more interestingly, a subdiffusion (α<1\alpha <1) implies an anomalous heat conduction with a convergent thermal conductivity (β<0\beta<0), consequently, the system is a thermal insulator in the thermodynamic limit. Existing numerical data support our theoretical prediction.Comment: 15 Revtex pages, 16 figures. Invited article for CHAOS focus issue commemorating the 50th anniversary of the Fermi-Pasta-Ulam (FPU) mode

    Domain wall propagation through spin wave emission

    Full text link
    We theoretically study field-induced domain wall (DW) motion in an electrically insulating ferromagnet with hard- and easy-axis anisotropies. DWs can propagate along a dissipationless wire through spin wave emission locked into the known soliton velocity at low fields. In the presence of damping, the mode appears before the Walker breakdown field for strong out-of-plane magnetic anisotropy, and the usual Walker rigid-body propagation mode becomes unstable when the field is between the maximal-DW-speed field and Walker breakdown field.Comment: 4 pages, 4 figure

    Study to define unsteady flow fields and their statistical characteristics

    Get PDF
    Preliminary estimates of space shuttle fluctuating pressure environments were made based on analyses of wind tunnel data, and empirical prediction techniques. Particular emphasis was given to the external tank and solid rocket boosters for the transonic speed regime during launch of a parallel-burn space shuttle configuration. Predicted environments are presented as space-averaged zonal profiles with progressive shading from zone to zone to illustrate spatial variations in the magnitude of the fluctuating pressure coefficient over the surfaces of the external tank and solid rocket boosters. Predictions are provided for the transonic Mach number range from 0.8 equal to or less than M sub infinity equal to or less than 1.5, and for supersonic Mach numbers of 2.0 and 3.0

    A dual modelling of evolving political opinion networks

    Full text link
    We present the result of a dual modeling of opinion network. The model complements the agent-based opinion models by attaching to the social agent (voters) network a political opinion (party) network having its own intrinsic mechanisms of evolution. These two sub-networks form a global network which can be either isolated from or dependent on the external influence. Basically, the evolution of the agent network includes link adding and deleting, the opinion changes influenced by social validation, the political climate, the attractivity of the parties and the interaction between them. The opinion network is initially composed of numerous nodes representing opinions or parties which are located on a one dimensional axis according to their political positions. The mechanism of evolution includes union, splitting, change of position and of attractivity, taken into account the pairwise node interaction decaying with node distance in power law. The global evolution ends in a stable distribution of the social agents over a quasi-stable and fluctuating stationary number of remaining parties. Empirical study on the lifetime distribution of numerous parties and vote results is carried out to verify numerical results

    Meterwave observations of a coronal hole

    Get PDF
    Meter-wave maps are presented showing a coronal hole at 30.9, 50.0, and 73.8 MHz using the Clark Lake Radioheliograph in October 1984. The coronal hole seen against the disk at all three frequencies shows interesting similarities to, and significant differences from its optical signatures in HeI lambda10830 spectroheliograms. The 73.8 MHz coronal hole, when seen near disk center, appears to coincide with the HeI footprint of the hole. At the lower frequencies, the emission comes from higher levels of the corona, and the hole appears to be displaced, probably due to the non-radial structure of the coronal hole. The contrast of the hole relative to the quiet Sun is much greater than reported previously for a coronal hole observed at 80 MHz. The higher contrast is certainly real, due to the superior dynamic range, sensitivity, and calibration of the Clark Lake instrument. Using a coronal hole model, the electron density is derived from radio observations of the brightness temperature. A very large discrepancy is found between the derived density and that determined from Skylab EUV observations of coronal holes. This discrepancy suggests that much of the physics of coronal holes has yet to be elucidated

    Analytic solution of charge density of single wall carbon nanotube in conditions of field electron emission

    Full text link
    We derived the analytic solution of induced electrostatic potential along single wall carbon nanotubes. Under the hypothesis of constant density of states in the charge-neutral level, we are able to obtain the linear density of excess charge in an external field parallel to the tube axis.Comment: 4 pages, 3 figure
    corecore