135 research outputs found

    Hardware of MRI System

    Get PDF
    Magnetic resonance imaging (MRI) is comprehensively applied in modern medical diagnosis and scientific research for its superb soft-tissue imaging quality and non-radiating characteristics. Main magnet, gradient assembly, and radio-frequency (RF) assembly are main hardware in an MRI system. The hardware performance has direct relationship with the ultimate system overall performance. The development of MRI system toward high magnetic field strength will acquire high signal-to-noise ratio (SNR) and resolution, and meanwhile the manufacture difficulty of main magnet, gradient assembly, and RF assembly will also be significantly elevated. This will make challenges on the design, materials, primitive device, and also the whole machine assembly. This chapter introduces the main hardware of the MRI system and corresponding functions and developments

    Superconducting Magnet Technology and Applications

    Get PDF

    Zwitterionic coating assisted by dopamine with metal-phenolic networks loaded on titanium with improved biocompatibility and antibacterial property for artificial heart

    Get PDF
    Introduction: Titanium (Ti) and Ti-based alloy materials are commonly used to develop artificial hearts. To prevent bacterial infections and thrombus in patients with implanted artificial hearts, long-term prophylactic antibiotics and anti-thrombotic drugs are required, and this may lead to health complications. Therefore, the development of optimized antibacterial and antifouling surfaces for Ti-based substrate is especially critical when designing artificial heart implants.Methods: In this study, polydopamine and poly-(sulfobetaine methacrylate) polymers were co-deposited to form a coating on the surface of Ti substrate, a process initiated by Cu2+ metal ions. The mechanism for the fabrication of the coating was investigated by coating thickness measurements as well as Ultraviolet–visible and X-ray Photoelectron (XPS) spectroscopy. Characterization of the coating was observed by optical imaging, scanning electron microscope (SEM), XPS, atomic force microscope (AFM), water contact angle and film thickness. In addition, antibacterial property of the coating was tested using Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) as model strains, while the material biocompatibility was assessed by the antiplatelet adhesion test using platelet-rich plasma and in vitro cytotoxicity tests using human umbilical vein endothelial cells and red blood cells.Results and discussion: Optical imaging, SEM, XPS, AFM, water contact angle, and film thickness tests demonstrated that the coating was successfully deposited on the Ti substrate surface. The biocompatibility and antibacterial assays showed that the developed surface holds great potential for improving the antibacterial and antiplatelet adhesion properties of Ti-based heart implants

    Optimal Coded Diffraction Patterns for Practical Phase Retrieval

    Full text link
    Phase retrieval, a long-established challenge for recovering a complex-valued signal from its Fourier intensity measurements, has attracted significant interest because of its far-flung applications in optical imaging. To enhance accuracy, researchers introduce extra constraints to the measuring procedure by including a random aperture mask in the optical path that randomly modulates the light projected on the target object and gives the coded diffraction patterns (CDP). It is known that random masks are non-bandlimited and can lead to considerable high-frequency components in the Fourier intensity measurements. These high-frequency components can be beyond the Nyquist frequency of the optical system and are thus ignored by the phase retrieval optimization algorithms, resulting in degraded reconstruction performances. Recently, our team developed a binary green noise masking scheme that can significantly reduce the high-frequency components in the measurement. However, the scheme cannot be extended to generate multiple-level aperture masks. This paper proposes a two-stage optimization algorithm to generate multi-level random masks named OptMask\textit{OptMask} that can also significantly reduce high-frequency components in the measurements but achieve higher accuracy than the binary masking scheme. Extensive experiments on a practical optical platform were conducted. The results demonstrate the superiority and practicality of the proposed OptMask\textit{OptMask} over the existing masking schemes for CDP phase retrieval

    Tree ring δ18O reveals no long-term change of atmospheric water demand since 1800 in the northern Great Hinggan Mountains, China

    Get PDF
    Global warming will significantly increase transpirational water demand, which could dramatically affect plant physiology and carbon and water budgets. Tree ring δ18O is a potential index of the leaf-to-air vapor-pressure deficit (VPD) and therefore has great potential for long-term climatic reconstruction. Here we developed δ18O chronologies of two dominant native trees, Dahurian larch (Larix gmelinii Rupr.) and Mongolian pine (Pinus sylvestris var. mongolica), from a permafrost region in the Great Hinggan Mountains of northeastern China. We found that the July–August VPD and relative humidity were the dominant factors that controlled tree ring δ18O in the study region, indicating strong regulation of stomatal conductance. Based on the larch and pine tree ring δ18O chronologies, we developed a reliable summer (July–August) VPD reconstruction since 1800. Warming growing season temperatures increase transpiration and enrich cellulose 18O, but precipitation seemed to be the most important influence on VPD changes in this cold region. Periods with stronger transpirational demand occurred around the 1850s, from 1914 to 1925, and from 2005 to 2010. However, we found no overall long-term increasing or decreasing trends for VPD since 1800, suggesting that despite the increasing temperatures and thawing permafrost throughout the region, forest transpirational demand has not increased significantly during the past two centuries. Under current climatic conditions, VPD did not limit growth of larch and pine, even during extremely drought years. Our findings will support more realistic evaluations and reliable predictions of the potential influences of ongoing climatic change on carbon and water cycles and on forest dynamics in permafrost regions

    Discovery and identification of potential biomarkers of papillary thyroid carcinoma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Thyroid carcinoma is the most common endocrine malignancy and a common cancer among the malignancies of head and neck. Noninvasive and convenient biomarkers for diagnosis of papillary thyroid carcinoma (PTC) as early as possible remain an urgent need. The aim of this study was to discover and identify potential protein biomarkers for PTC specifically.</p> <p>Methods</p> <p>Two hundred and twenty four (224) serum samples with 108 PTC and 116 controls were randomly divided into a training set and a blind testing set. Serum proteomic profiles were analyzed using SELDI-TOF-MS. Candidate biomarkers were purified by HPLC, identified by LC-MS/MS and validated using ProteinChip immunoassays.</p> <p>Results</p> <p>A total of 3 peaks (<it>m/z </it>with 9190, 6631 and 8697 Da) were screened out by support vector machine (SVM) to construct the classification model with high discriminatory power in the training set. The sensitivity and specificity of the model were 95.15% and 93.97% respectively in the blind testing set. The candidate biomarker with <it>m/z </it>of 9190 Da was found to be up-regulated in PTC patients, and was identified as haptoglobin alpha-1 chain. Another two candidate biomarkers (6631, 8697 Da) were found down-regulated in PTC and identified as apolipoprotein C-I and apolipoprotein C-III, respectively. In addition, the level of haptoglobin alpha-1 chain (9190 Da) progressively increased with the clinical stage I, II, III and IV, and the expression of apolipoprotein C-I and apolipoprotein C-III (6631, 8697 Da) gradually decreased in higher stages.</p> <p>Conclusion</p> <p>We have identified a set of biomarkers that could discriminate PTC from non-cancer controls. An efficient strategy, including SELDI-TOF-MS analysis, HPLC purification, MALDI-TOF-MS trace and LC-MS/MS identification, has been proved successful.</p
    • …
    corecore