17,238 research outputs found

    Probing the folding of mini-protein Beta3s by two-dimensional infrared spectroscopy; simulation study

    Get PDF
    We propose to use infrared coherent two-dimensional correlation spectroscopy (2DCS) to characterize the folding mechanism of the mini-protein Beta3s. In this study Beta3s was folded by molecular dynamics (MD) simulation and intermediate conformational ensembles were identified. The one and two-dimensional correlation spectrum was calculated for the intermediate and native states of the mini-protein. A direct structure-spectra relationship was determined by analysis of conformational properties and specific residue contributions. We identified the structural origin of diagonal and off-diagonal peaks in the 2DCS spectra for the native and intermediate conformational ensembles in the folding mechanism. This work supports the implementation of computational techniques in conjunction with experimental 2DCS to study the folding mechanism of proteins. In addition to exploring the folding mechanism the work presented here can be applied in combination with experiment to refine and validate current molecular dynamics force fields

    Resonance states of open quantum dots

    Get PDF
    We have computed the spectra of resonance states for several open quantum dot systems. These states are identified using the electron dwell time. The statistics of the spectra are exactly the same as that of the corresponding closed system, even when the level widths are comparable with the average spacing. In particular, for a regular structure, e.g., an open rectangular quantum dot, the resonance state level spacing satisfies the Poisson distribution. For an irregular structure, e.g., an open Sinai billiard, we found that the spacings satisfy the GOE or GUE statistics depending on whether an external magnetic field is applied. Thus in this regime of ballistic transport, the statistics of resonance transmission contains characteristics of the corresponding intrinsic quantum level distribution. © 1996 The American Physical Society.published_or_final_versio

    Magnetocapacitance of a three-probe mesoscopic capacitor

    Get PDF
    We report a numerical calculation of the magnetocapacitance for a three-probe capacitor and investigate the asymmetry property of the electrochemical capacitance under a magnetic-field reversal. At low magnetic fields the quantum magnetocapacitance shows a large asymmetry under a field reversal. At higher fields the capacitance is dominated by Aharonov-Bohm type oscillations and the fluctuations of the asymmetry is reduced.published_or_final_versio

    Learning an Intrinsic Garment Space for Interactive Authoring of Garment Animation

    Get PDF
    Authoring dynamic garment shapes for character animation on body motion is one of the fundamental steps in the CG industry. Established workflows are either time and labor consuming (i.e., manual editing on dense frames with controllers), or lack keyframe-level control (i.e., physically-based simulation). Not surprisingly, garment authoring remains a bottleneck in many production pipelines. Instead, we present a deep-learning-based approach for semi-automatic authoring of garment animation, wherein the user provides the desired garment shape in a selection of keyframes, while our system infers a latent representation for its motion-independent intrinsic parameters (e.g., gravity, cloth materials, etc.). Given new character motions, the latent representation allows to automatically generate a plausible garment animation at interactive rates. Having factored out character motion, the learned intrinsic garment space enables smooth transition between keyframes on a new motion sequence. Technically, we learn an intrinsic garment space with an motion-driven autoencoder network, where the encoder maps the garment shapes to the intrinsic space under the condition of body motions, while the decoder acts as a differentiable simulator to generate garment shapes according to changes in character body motion and intrinsic parameters. We evaluate our approach qualitatively and quantitatively on common garment types. Experiments demonstrate our system can significantly improve current garment authoring workflows via an interactive user interface. Compared with the standard CG pipeline, our system significantly reduces the ratio of required keyframes from 20% to 1 -- 2%

    Adenosine-mono-phosphate-activated protein kinase-independent effects of metformin in T cells

    Get PDF
    The anti-diabetic drug metformin regulates T-cell responses to immune activation and is proposed to function by regulating the energy-stress-sensing adenosine-monophosphate-activated protein kinase (AMPK). However, the molecular details of how metformin controls T cell immune responses have not been studied nor is there any direct evidence that metformin acts on T cells via AMPK. Here, we report that metformin regulates cell growth and proliferation of antigen-activated T cells by modulating the metabolic reprogramming that is required for effector T cell differentiation. Metformin thus inhibits the mammalian target of rapamycin complex I signalling pathway and prevents the expression of the transcription factors c-Myc and hypoxia-inducible factor 1 alpha. However, the inhibitory effects of metformin on T cells did not depend on the expression of AMPK in T cells. Accordingly, experiments with metformin inform about the importance of metabolic reprogramming for T cell immune responses but do not inform about the importance of AMPK
    corecore