102 research outputs found

    Digital Twin Modeling of a Five-Axis Linkage Crossbeam Mobile Gantry Milling Machine

    Get PDF
    In the innovative design stage of machine tool (MT), in order to understand the motion status of the MT under different conditions, shorten the development cycle, and improve machining accuracy, this paper proposes a digital twin modeling method for large crossbeam mobile gantry milling machines. By combining digital twin technology, the selection of MT motion components and the design of various motion mechanisms were completed, as well as the machining scheme design of the MT bed. Modeling and simulation were conducted to complete the workpiece machining function, By using digital twin technology to virtually simulate CNC MT and verify their properties in physical prototypes, new ideas are provided for the application of digital twin technology in the design process of CNC MT.</p

    Development of ISO Standard for Real-Time Polymerase Chain Reaction Detection of Turkey-Derived Material

    Get PDF
    In this study, the specific fragment of turkey chromosome Z-DNA sequence was selected as the target sequence for turkey-derived material detection. A real-time polymerase chain reaction (real-time PCR) method was established, which had good interspecies specificity and interspecies consistency. The target sequence was cloned into the plasmid pUC57, and after being diluted to different concentrations, the plasmid was tested by real-time PCR. The absolute detection limit of this method was 5 copies/PCR reaction. An international collaborative validation trial was conducted to validate this method. The results showed that the false positive and negative rates of the proposed method were both 0%, and the absolute detection limit was 5 copies/PCR reaction. The results of qualitative analysis of the diluted plasmid showed that the inter-laboratory standard deviation was 0.30, less than the maximum permitted value of 1; at a detection probability of 95%, the absolute detection limit was 3.2 copies/PCR reaction, less than the maximum allowable value of 20 copies/PCR reaction. Based on voting results and reviewers’ comments, this method was approved by the International Organization for Standardization (ISO) as an international standard method (ISO/TS 20224-8:2022)

    Vibration performance prediction and reliability analysis for rolling bearing

    Get PDF
    The bearing vibration signal is a rich dynamic symptom of bearing wear, and the vibration signal of rolling bearing presents chaotic characteristics. Input and output variables of vibration signal can be constructed through phase space reconstruction, the Input and output variables can be imported into the prediction model for prediction. The prediction accuracy of the extreme learning machine (ELM) model, Kriging model and RBF model are compared, the results show that ELM has higher accuracy, so ELM chaos model is used to predict the future vibration time series data, and the forecasting error can be obtained by comparing the prediction value with the actual values so as to verity the feasibility of the ELM model. The prediction results of the future state of the bearing are processed as the grey-bootstrap method, and the performance reliability prediction of the bearing is realized by the Poisson counting process. The experimental data show that with the deepening of the fault degree, the reliability performance decreases gradually. The reliability performance of the bearing without fault is 100 %, and the reliability performance is 47.56 % when the inner ring faulty size is 0.72 mm

    Indirect coupling method for structural analysis of refuge chamber

    Get PDF
    Structural analysis is important in the design of a refuge chamber, which can ensure the structural safety of the refuge chamber in case of an explosion. In this paper, an indirect coupling method is utilized to calculate deformation of a refuge chamber under explosion, when gas explosion is simulated in a roadway model, and the pressure waves on different locations of chamber are extracted. The extracted pressure-time curves are applied to a detailed model of the refuge chamber to obtain deformation values. However, reliabilities and validities of the simulation results are not provided. Thereby, we conducted three groups of small-scale physical experiments for comparing the corresponding simulation results calculated by the indirect coupling method. Meanwhile, the theoretical values were obtained by the method of extracting the specific impulse. The results show that the simulation values fit well with the experimental and theoretical values. The process of applying a pressure-time curve to the model covers the specific impulse which acts on the prototype. This method can be used to calculate the deformation of complex equipment under explosion

    Towards a high-intensity muon source at CiADS

    Full text link
    The proposal of a high-intensity muon source driven by the CiADS linac, which has the potential to be one of the state-of-the-art facilities, is presented in this paper. We briefly introduce the development progress of the superconducting linac of CiADS. Then the consideration of challenges related to the high-power muon production target is given and the liquid lithium jet muon production target concept is proposed, for the first time. The exploration of the optimal target geometry for surface muon production efficiency and the investigation into the performance of liquid lithium jet target in muon rate are given. Based on the comparison between the liquid lithium jet target and the rotation graphite target, from perspectives of surface muon production efficiency, heat processing ability and target geometry compactness, the advantages of the new target concept are demonstrated and described comprehensively. The technical challenges and the feasibility of the free-surface liquid lithium target are discussed

    Multi-layer reconstruction of skull base after endoscopic transnasal surgery for invasive pituitary adenomas

    Get PDF
    Objective. To explore the efficacy of multi-layer skull base reconstruction after endoscopic transnasal surgery for invasive pituitary adenomas (IPAs). Clinical rationale for the study. Skull base reconstruction for IPAs. Material and methods. This retrospective analysis involved 160 patients with IPAs who underwent operations from October 2018 to October 2020. All patients were diagnosed with IPAs by pituitary enhanced magnetic resonance imaging, and all tumours were confirmed to be Knosp grades 3a, 3b, or 4. The experimental group and the control group comprised 80 patients in each, and we used different methods to reconstruct the skull base in each group. The comparison indicators included cerebrospinal fluid leakage, sellar floor bone flap (or middle turbinate) shifting, delayed healing of the skull base reconstructed tissue, nasal discomfort, and epistaxis. We used the chi-square test, and p &lt; 0.05 was considered statistically significant. Results. In the experimental group, cerebrospinal fluid leakage occurred intraoperatively in 73 patients, two of whom had cerebrospinal fluid leakage postoperatively. Brain CT 12 months postoperatively showed no sellar floor bone flap (or middle turbinate) shifting. Endoscopic transnasal checks performed seven days after surgery showed that the skull base reconstructed tissue had healed in 74 patients and had failed to heal in six. However, endoscopic transnasal checks showed that all six of these patients’ pedicled nasoseptal flaps had healed well by 14 days after surgery. Other sequelae comprised nasal discomfort in four patients, and epistaxis in four. In the control group, cerebrospinal fluid leakage occurred intraoperatively in 71 patients, 14 of whom had cerebrospinal fluid leakage postoperatively. Brain CT 12 months postoperatively showed floor bone flap (or middle turbinate) shifting in 12 patients. Endoscopic transnasal checks performed seven days after surgery showed that the skull base reconstructed tissue had healed in 65 patients. In 12 patients, pedicled nasoseptal flaps had healed well by 14 days after surgery, while the remaining three patients required reoperation. Other sequelae comprised nasal discomfort in five patients, and epistaxis in six. Conclusions. This new method of multi-layer skull base reconstruction could play an important role in endoscopic transnasal IPA surgery

    Design and Analysis of a Novel Variable Stiffness Joint Based on Leaf Springs

    No full text
    In response to challenges like the complexity and limited scalability of existing variable stiffness joints, a novel variable stiffness joint, based on leaf spring elements, is introduced in this paper. The joint stiffness can be adjusted in real time by changing the effective length of the leaf spring via the use of an Archimedean spiral groove. The stiffness adjustment range and load capacity of the joint can be defined by manually configuring the number of springs involved during offline joint operations. A stiffness model for the joint is established based on the cantilever beam theory of material mechanics. The coupled effects of the design parameters of the variable stiffness mechanism on joint stiffness, elastic torque, and stiffness adjustment resistance torque are analyzed. A dynamic model for the joint is developed, while a PID controller is designed for simulation purposes. The motion characteristics of the joint are analyzed, confirming that this approach has certain advantages in terms of stiffness adjustment speed and accuracy

    Optimum IMFs Selection Based Envelope Analysis of Bearing Fault Diagnosis in Plunger Pump

    No full text
    As the plunger pump always works in a complicated environment and the hydraulic cycle has an intrinsic fluid-structure interaction character, the fault information is submerged in the noise and the disturbance impact signals. For the fault diagnosis of the bearings in plunger pump, an optimum intrinsic mode functions (IMFs) selection based envelope analysis was proposed. Firstly, the Wigner-Ville distribution was calculated for the acquired vibration signals, and the resonance frequency brought on by fault was obtained. Secondly, the empirical mode decomposition (EMD) was employed for the vibration signal, and the optimum IMFs and the filter bandwidth were selected according to the Wigner-Ville distribution. Finally, the envelope analysis was utilized for the selected IMFs filtered by the band pass filter, and the fault type was recognized by compared with the bearing character frequencies. For the two modes, inner race fault and compound fault in the inner race and roller of rolling element bearing in plunger pump, the experiments show that a promising result is achieved
    • …
    corecore