13,000 research outputs found
Mathematical control of complex systems
Copyright © 2013 ZidongWang et al.This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited
Moving Stationary State of Exciton-Phonon Condensate in Cu2O
We explore a simple theoretical model to describe the properties of Bose
condensed para-excitons in Cu2O. Taking into account the exciton-phonon
interaction and introducing a coherent phonon part of the moving condensate, we
derive the dynamic equations for the exciton-phonon condensate. Within the Bose
approximation for excitons, we discuss the conditions for the moving
inhomogeneous condensate to appear in the crystal. We calculate the condensate
wave function and energy and a collective excitation spectrum in the
semiclassical approximation. The stability conditions of the moving condensate
are analyzed by use of Landau arguments, and two critical velocities appear in
the theory. Finally, we apply our model to describe the recently observed
interference between two coherent exciton-phonon packets in Cu2O.Comment: 20 pages (LaTeX), one figure (.ps) incorporated by epsf. Submitted to
Phys. Stat. Sol (B
Mathematical control of complex systems 2013
Mathematical control of complex systems have already become an ideal research area for control engineers, mathematicians, computer scientists, and biologists to understand, manage, analyze, and interpret functional information/dynamical behaviours from real-world complex dynamical systems, such as communication systems, process control, environmental systems, intelligent manufacturing systems, transportation systems, and structural systems. This special issue aims to bring together the latest/innovative knowledge and advances in mathematics for handling complex systems. Topics include, but are not limited to the following: control systems theory (behavioural systems, networked control systems, delay systems, distributed systems, infinite-dimensional systems, and positive systems); networked control (channel capacity constraints, control over communication networks, distributed filtering and control, information theory and control, and sensor networks); and stochastic systems (nonlinear filtering, nonparametric methods, particle filtering, partial identification, stochastic control, stochastic realization, system identification)
Assessing photochemical ozone formation in the Pearl River Delta with a photochemical trajectory model
A photochemical trajectory model (PTM), coupled with the Master Chemical Mechanism (MCM) describing the degradation of 139 volatile organic compounds (VOCs) in the troposphere, was developed and used for the first time to simulate the formation of photochemical pollutants at Wangqingsha (WQS), Guangzhou during photochemical pollution episodes between 12 and 17 November, 2007. The simulated diurnal variations and mixing ratios of ozone were in good agreement with observed data (R2=0.80, P<0.05), indicating that the photochemical trajectory model - an integration of boundary layer trajectories, precursor emissions and chemical processing - provides a reasonable description of ozone formation in the Pearl River Delta (PRD) region. Calculated photochemical ozone creation potential (POCP) indices for the region indicated that alkanes and oxygenated organic compounds had relatively low reactivity, while alkenes and aromatics presented high reactivity, as seen in other airsheds in Europe. Analysis of the emission inventory found that the sum of 60 of the 139 VOC species accounted for 92% of the total POCP-weighted emission. The 60 VOC species include C2-C6 alkenes, C6-C8 aromatics, biogenic VOCs, and so on. The results indicated that regional scale ozone formation in the PRD region can be mainly attributed to a relatively small number of VOC species, namely isoprene, ethene, m-xylene, and toluene, etc. A further investigation of the relative contribution of the main emission source categories to ozone formation suggested that mobile sources were the largest contributor to regional O3 formation (40%), followed by biogenic sources (29%), VOC product-related sources (23%), industry (6%), biomass burning (1%), and power plants (1%). The findings obtained in this study would advance our knowledge of air quality in the PRD region, and provide useful information to local government on effective control of photochemical smog in the region. © 2010 Elsevier Ltd
Discriminative Region Proposal Adversarial Networks for High-Quality Image-to-Image Translation
Image-to-image translation has been made much progress with embracing
Generative Adversarial Networks (GANs). However, it's still very challenging
for translation tasks that require high quality, especially at high-resolution
and photorealism. In this paper, we present Discriminative Region Proposal
Adversarial Networks (DRPAN) for high-quality image-to-image translation. We
decompose the procedure of image-to-image translation task into three iterated
steps, first is to generate an image with global structure but some local
artifacts (via GAN), second is using our DRPnet to propose the most fake region
from the generated image, and third is to implement "image inpainting" on the
most fake region for more realistic result through a reviser, so that the
system (DRPAN) can be gradually optimized to synthesize images with more
attention on the most artifact local part. Experiments on a variety of
image-to-image translation tasks and datasets validate that our method
outperforms state-of-the-arts for producing high-quality translation results in
terms of both human perceptual studies and automatic quantitative measures.Comment: ECCV 201
Carbonyl sulfide, dimethyl sulfide and carbon disulfide in the Pearl River Delta of southern China: Impact of anthropogenic and biogenic sources
Reduced sulfur compounds (RSCs) such as carbonyl sulfide (OCS), dimethyl sulfide (DMS) and carbon disulfide (CS2) impact radiative forcing, ozone depletion, and acid rain. Although Asia is a large source of these compounds, until now a long-term study of their emission patterns has not been carried out. Here we analyze 16 months of RSC data measured at a polluted rural/coastal site in the greater Pearl River Delta (PRD) of southern China. A total of 188 canister air samples were collected from August 2001 to December 2002. The OCS and CS2 mixing ratios within these samples were higher in autumn/winter and lower in summer due to the influence of Asian monsoon circulations. Comparatively low DMS values observed in this coastal region suggest a relatively low biological productivity during summer months. The springtime OCS levels in the study region (574 ± 40 pptv) were 25% higher than those on other East Asia coasts such Japan, whereas the springtime CS2 and DMS mixing ratios in the PRD (47 ± 38 pptv and 22 ± 5 pptv, respectively) were 3-30 times lower than elevated values that have been measured elsewhere in East Asia (Japan and Korea) at this time of year. Poor correlations were found among the three RSCs in the whole group of 188 samples, suggesting their complex and variable sources in the region. By means of backward Lagrangian particle release simulations, air samples originating from the inner PRD, urban Hong Kong and South China Sea were identified. The mean mixing ratio of OCS in the inner PRD was significantly higher than that in Hong Kong urban air and South China Sea marine air (p < 0.001), whereas no statistical differences were found for DMS and CS2 among the three regions (p > 0.05). Using a linear regression method based on correlations with the urban tracer CO, the estimated OCS emission in inner PRD (49.6 ± 4.7 Gg yr-1) was much higher than that in Hong Kong (0.32 ± 0.05 Gg yr-1), whereas the estimated CS2 and DMS emissions in the study region accounted for a very few percentage of the total CS2 and DMS emission in China. These findings lay the foundation for better understanding sulfur chemistry in the greater PRD region of southern China. © 2010 Elsevier Ltd
Radiation tolerance of nanocrystalline ceramics: insights from Yttria Stabilized Zirconia.
Materials for applications in hostile environments, such as nuclear reactors or radioactive waste immobilization, require extremely high resistance to radiation damage, such as resistance to amorphization or volume swelling. Nanocrystalline materials have been reported to present exceptionally high radiation-tolerance to amorphization. In principle, grain boundaries that are prevalent in nanomaterials could act as sinks for point-defects, enhancing defect recombination. In this paper we present evidence for this mechanism in nanograined Yttria Stabilized Zirconia (YSZ), associated with the observation that the concentration of defects after irradiation using heavy ions (Kr(+), 400 keV) is inversely proportional to the grain size. HAADF images suggest the short migration distances in nanograined YSZ allow radiation induced interstitials to reach the grain boundaries on the irradiation time scale, leaving behind only vacancy clusters distributed within the grain. Because of the relatively low temperature of the irradiations and the fact that interstitials diffuse thermally more slowly than vacancies, this result indicates that the interstitials must reach the boundaries directly in the collision cascade, consistent with previous simulation results. Concomitant radiation-induced grain growth was observed which, as a consequence of the non-uniform implantation, caused cracking of the nano-samples induced by local stresses at the irradiated/non-irradiated interfaces
- …