128,116 research outputs found
Large Scale Constrained Linear Regression Revisited: Faster Algorithms via Preconditioning
In this paper, we revisit the large-scale constrained linear regression
problem and propose faster methods based on some recent developments in
sketching and optimization. Our algorithms combine (accelerated) mini-batch SGD
with a new method called two-step preconditioning to achieve an approximate
solution with a time complexity lower than that of the state-of-the-art
techniques for the low precision case. Our idea can also be extended to the
high precision case, which gives an alternative implementation to the Iterative
Hessian Sketch (IHS) method with significantly improved time complexity.
Experiments on benchmark and synthetic datasets suggest that our methods indeed
outperform existing ones considerably in both the low and high precision cases.Comment: Appear in AAAI-1
Analysis of the system with QCD sum rules
In this article, we construct the color singlet-singlet-singlet interpolating
current with to study the
system through QCD sum rules approach. In calculations, we
consider the contributions of the vacuum condensates up to dimension-16 and
employ the formula
to choose the
optimal energy scale of the QCD spectral density. The numerical result
indicates that there exists a resonance
state lying above the threshold to saturate the QCD sum
rules. This resonance state may be found by focusing on the channel of the decay in the future.Comment: 9 pages, 4 figure
An Affect-Rich Neural Conversational Model with Biased Attention and Weighted Cross-Entropy Loss
Affect conveys important implicit information in human communication. Having
the capability to correctly express affect during human-machine conversations
is one of the major milestones in artificial intelligence. In recent years,
extensive research on open-domain neural conversational models has been
conducted. However, embedding affect into such models is still under explored.
In this paper, we propose an end-to-end affect-rich open-domain neural
conversational model that produces responses not only appropriate in syntax and
semantics, but also with rich affect. Our model extends the Seq2Seq model and
adopts VAD (Valence, Arousal and Dominance) affective notations to embed each
word with affects. In addition, our model considers the effect of negators and
intensifiers via a novel affective attention mechanism, which biases attention
towards affect-rich words in input sentences. Lastly, we train our model with
an affect-incorporated objective function to encourage the generation of
affect-rich words in the output responses. Evaluations based on both perplexity
and human evaluations show that our model outperforms the state-of-the-art
baseline model of comparable size in producing natural and affect-rich
responses.Comment: AAAI-1
A Framework of Hybrid Force/Motion Skills Learning for Robots
Human factors and human-centred design philosophy are highly desired in today’s robotics applications such as human-robot interaction (HRI). Several studies showed that endowing robots of human-like interaction skills can not only make them more likeable but also improve their performance. In particular, skill transfer by imitation learning can increase usability and acceptability of robots by the users without computer programming skills. In fact, besides positional information, muscle stiffness of the human arm, contact force with the environment also play important roles in understanding and generating human-like manipulation behaviours for robots, e.g., in physical HRI and tele-operation. To this end, we present a novel robot learning framework based on Dynamic Movement Primitives (DMPs), taking into consideration both the positional and the contact force profiles for human-robot skills transferring. Distinguished from the conventional method involving only the motion information, the proposed framework combines two sets of DMPs, which are built to model the motion trajectory and the force variation of the robot manipulator, respectively. Thus, a hybrid force/motion control approach is taken to ensure the accurate tracking and reproduction of the desired positional and force motor skills. Meanwhile, in order to simplify the control system, a momentum-based force observer is applied to estimate the contact force instead of employing force sensors. To deploy the learned motion-force robot manipulation skills to a broader variety of tasks, the generalization of these DMP models in actual situations is also considered. Comparative experiments have been conducted using a Baxter Robot to verify the effectiveness of the proposed learning framework on real-world scenarios like cleaning a table
- …
