29,461 research outputs found
Scalable solid-state quantum computation in decoherence-free subspaces with trapped ions
We propose a decoherence-free subspaces (DFS) scheme to realize scalable
quantum computation with trapped ions. The spin-dependent Coulomb interaction
is exploited, and the universal set of unconventional geometric quantum gates
is achieved in encoded subspaces that are immune from decoherence by collective
dephasing. The scalability of the scheme for the ion array system is
demonstrated, either by an adiabatic way of switching on and off the
interactions, or by a fast gate scheme with comprehensive DFS encoding and
noise decoupling techniques.Comment: 4 pages, 1 figur
Predicting diabetes-related hospitalizations based on electronic health records
OBJECTIVE: To derive a predictive model to identify patients likely to be hospitalized during the following year due to complications attributed to Type II diabetes. METHODS: A variety of supervised machine learning classification methods were tested and a new method that discovers hidden patient clusters in the positive class (hospitalized) was developed while, at the same time, sparse linear support vector machine classifiers were derived to separate positive samples from the negative ones (non-hospitalized). The convergence of the new method was established and theoretical guarantees were proved on how the classifiers it produces generalize to a test set not seen during training. RESULTS: The methods were tested on a large set of patients from the Boston Medical Center - the largest safety net hospital in New England. It is found that our new joint clustering/classification method achieves an accuracy of 89% (measured in terms of area under the ROC Curve) and yields informative clusters which can help interpret the classification results, thus increasing the trust of physicians to the algorithmic output and providing some guidance towards preventive measures. While it is possible to increase accuracy to 92% with other methods, this comes with increased computational cost and lack of interpretability. The analysis shows that even a modest probability of preventive actions being effective (more than 19%) suffices to generate significant hospital care savings. CONCLUSIONS: Predictive models are proposed that can help avert hospitalizations, improve health outcomes and drastically reduce hospital expenditures. The scope for savings is significant as it has been estimated that in the USA alone, about $5.8 billion are spent each year on diabetes-related hospitalizations that could be prevented.Accepted manuscrip
Operator entanglement of two-qubit joint unitary operations revisited: Schmidt number approach
Operator entanglement of two-qubit joint unitary operations is revisited.
Schmidt number is an important attribute of a two-qubit unitary operation, and
may have connection with the entanglement measure of the unitary operator. We
found the entanglement measure of two-qubit unitary operators is classified by
the Schmidt number of the unitary operators. The exact relation between the
operator entanglement and the parameters of the unitary operator is clarified
too.Comment: To appear in the Brazilian Journal of Physic
Exciton-magnon transitions in the frustrated chromium antiferromagnets CuCrO2, alpha-CaCr2O4, CdCr2O4, and ZnCr2O4
We report on optical transmission spectroscopy of the Cr-based frustrated
triangular antiferromagnets CuCrO2 and alpha-CaCr2O4, and the spinels CdCr2O4
and ZnCr2O4 in the near-infrared to visible-light frequency range. We explore
the possibility to search for spin correlations far above the magnetic ordering
temperature and for anomalies in the magnon lifetime in the magnetically
ordered state by probing exciton-magnon sidebands of the spin-forbidden
crystal-field transitions of the Cr3+ ions (spin S = 3/2). In CuCrO2 and
alpha-CaCr2O4 the appearance of fine structures below T_N is assigned to magnon
sidebands by comparison with neutron scattering results. The temperature
dependence of the line width of the most intense sidebands in both compounds
can be described by an Arrhenius law. For CuCrO2 the sideband associated with
the 4A2 -> 2T2 transition can be observed even above T_N. Its line width does
not show a kink at the magnetic ordering temperature and can alternatively be
described by a Z2 vortex scenario proposed previously for similar materials.
The exciton-magnon features in alpha-CaCr2O4 are more complex due to the
orthorhombic distortion. While for CdCr2O4 magnon sidebands are identified
below T_N and one sideband excitation is found to persist across the magnetic
ordering transition, only a weak fine structure related to magnetic ordering
has been observed in ZnCr2O4.Comment: 14 pages, 10 figures, all comments are welcome and appreciated,
accepted for publication in PR
In-plane elastic wave propagation and band-gaps in layered functionally graded phononic crystals
AbstractIn-plane wave propagation in layered phononic crystals composed of functionally graded interlayers arisen from the solid diffusion of homogeneous isotropic materials of the crystal is considered. Wave transmission and band-gaps due to the material gradation and incident wave-field are investigated. A classification of band-gaps in layered phononic crystals is proposed. The classification relies on the analysis of the eigenvalues of the transfer matrix for a unit-cell and the asymptotics derived for the transmission coefficient. Two kinds of band-gaps, where the transmission coefficient decays exponentially with the number of unit-cells are specified. The so-called low transmission pass-bands are introduced in order to identify frequency ranges, in which the transmission is sufficiently low for engineering applications, but it does not tend to zero exponentially as the number of unit-cells tends to infinity. A polyvalent analysis of the geometrical and physical parameters on band-gaps is presented
Distributed Utilization Control for Real-time Clusters with Load Balancing
Recent years have seen rapid growth of online services that rely on large-scale server clusters to handle high volume of requests. Such clusters must adaptively control the CPU utilizations of many processors in order to maintain desired soft real-time performance and prevent system overload in face of unpredictable workloads. This paper presents DUC-LB, a novel distributed utilization control algorithm for cluster-based soft real-time applications. Compared to earlier works on utilization control, a distinguishing feature of DUC-LB is its capability to handle system dynamics caused by load balancing, which is a common and essential component of most clusters today. Simulation results and control-theoretic analysis demonstrate that DUC-LB can provide robust utilization control and effective load balancing in large-scale clusters
Highly sensitive, stretchable and durable strain sensors based on conductive double-network polymer hydrogels
Hydrogel-based strain sensors have been attracting immense attention for wearable electronic devices owing to their intrinsic soft characteristics and flexibility. However, developing hydrogel sensors with hightensile strength, stretchability, and strain sensitivity remains a great challenge. Herein, we report a technique to synthesize highly sensitive hydrogel-based strain sensors by integrating carbon nanofibers (CNFs) with a double-network (DN) polymer hydrogel matrix comprising of a physically cross-linked agar network and a covalently cross-linked polyacrylamide (PAAm) network. The resultant nanocomposite sensors display superior piezoresistive sensitivity with a hightrue gauge factor (GFT = 1.78) at an ultrahigh strain of 1,000%, a fast response time and linear correlation of ln(R/R0) and ln(L/L0) up to 1,000% strain. Most significantly, these sensors possess highmechanical strength (~0.6 MPa) and superb durability (>1,000 cycles at strain of 100%), stemming from the effective energy dissipation mechanism of the first agar network acting as sacrificial bonds and the CNFs serving as dynamic nanofillers. The combination of highstrain sensitivity and ultrahigh stretchability of hydrogel sensors makes it possible to sense both small mechanical deformations induced by human motions and large strain up to 1,000%
Density of states and electron concentration of double heterojunctions subjected to an in-plane magnetic field
We calculate the electronic states of
AlGaAs/GaAs/AlGaAs double heterojunctions subjected to
a magnetic field parallel to the quasi two-dimensional electron gas. We study
the energy dispersion curves, the density of states, the electron concentration
and the distribution of the electrons in the subbands. The parallel magnetic
field induces severe changes in the density of states, which are of crucial
importance for the explanation of the magnetoconductivity in these structures.
However, to our knowledge, there is no systematic study of the density of
states under these circumstances. We attempt a contribution in this direction.
For symmetric heterostructures, the depopulation of the higher subbands, the
transition from a single to a bilayer electron system and the domination of the
bulk Landau levels in the centre the wide quantum well, as the magnetic field
is continuously increased, are presented in the ``energy dispersion picture''
as well as in the ``electron concentration picture'' and in the ``density of
states picture''.Comment: J. Phys.: Condens. Matter 11 No 26 (5 July 1999) 5131-5141 Figures
(three) embedde
The electric field alignment of short carbon fibres to enhance the toughness of epoxy composites
An investigation is presented on increasing the fracture toughness of epoxy/short carbon fibre (SCF) composites by alignment of SCFs using an externally applied alternating current (AC) electric field. Firstly, the effects of SCF length, SCF content and AC electric field strength on the rotation of the SCFs suspended in liquid (i.e. uncured) epoxy resin are investigated. Secondly, it is shown the mode I fracture toughness of the cured epoxy composites increases with the weight fraction of SCFs up to a limiting value (5 wt%). Thirdly, the toughening effect is greater when the SCFs are aligned in the composite normal to the direction of crack growth. The SCFs increases the fracture toughness by inducing multiple intrinsic and extrinsic toughening mechanisms, which are identified. Based on the identified toughening mechanisms, an analytical model is proposed to predict the enhancement to the fracture toughness due to AC electric field alignment of the SCFs
- …