508 research outputs found

    Comparison of 7.2% hypertonic saline - 6% hydroxyethyl starch solution and 6% hydroxyethyl starch solution after the induction of anesthesia in patients undergoing elective neurosurgical procedures

    Get PDF
    OBJECTIVE: The ideal solution for fluid management during neurosurgical procedures remains controversial. The aim of this study was to compare the effects of a 7.2% hypertonic saline - 6% hydroxyethyl starch (HS-HES) solution and a 6% hydroxyethyl starch (HES) solution on clinical, hemodynamic and laboratory variables during elective neurosurgical procedures. METHODS: Forty patients scheduled for elective neurosurgical procedures were randomly assigned to the HS-HES group orthe HES group. Afterthe induction of anesthesia, patients in the HS-HES group received 250 mL of HS-HES (500 mL/h), whereas the patients in the HES group received 1,000 mL of HES (1000 mL/h). The monitored variables included clinical, hemodynamic and laboratory parameters. Chictr.org: ChiCTR-TRC-12002357 RESULTS: The patients who received the HS-HES solution had a significant decrease in the intraoperative total fluid input (

    In Vitro Study on Apoptosis Induced by Strontium-89 in Human Breast Carcinoma Cell Line

    Get PDF
    Many radiopharmaceuticals used for medical diagnosis and therapy are beta emitters; however, the mechanism of the cell death caused by beta-irradiation is not well understood. The objective of this study was to investigate the apoptosis of human breast carcinoma MCF-7 cell lines induced by Strontium-89 (89Sr) and its regulation and control mechanism. High-metastatic Breast Carcinoma MCF-7 cells were cultured in vitro using 89Sr with different radioactive concentration. The inhibition rate of cell proliferation was measured by MTT color matching method. The cell cycle retardation, apoptosis conditions, mitochondrion transmembrane potential difference and Fas expression were tested and analyzed. The genes P53 and bcl-2 expressions was also analyzed using immunity histochemical analysis. After being induced by 89Sr with various of radioactive concentration, it was found that the inhibition of cell proliferation of MCF-7 cells was obviously, the retardation of cell cycle occurred mainly in G2-M. It was also found that the obvious apoptosis occurred after being induced by 89Sr, the highest apoptosis rate reached 46.28%. The expressions of Fas acceptor and P53 gene increased, while bcl-2 gene expression decreasesd. These findings demonstrate that in the ranges of a certain radioactive concentration, the inhibition rate of MCF-7 cell proliferation and retardation of cell cycle had positive correlation with the concentration of 89Sr. And the mitochondrion transmembrane potential decrease would induce the apoptosis of MCF-7 cell notably, which were controlled by P53 and bcl-2 genes, involved with the Fas acceptor

    Brown adipocytes can display a mammary basal myoepithelial cell phenotype in vivo

    Get PDF
    This work was supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB13030000) and the CAS-Novonordisk Foundation, as well as grants from the ‘1000 talents’ recruitment program, and a ‘Great-wall professorship’ from the CAS-Novonordisk Foundation all to JRS. We are grateful to all the members of Molecular Energetics Group for their support and discussion of the results. We would like to thank the Center for Biological Imaging from Institute of Biophysics Chinese Academy of Sciences and Professor Zhaohui Wang's Lab from Institute of Genetics and Developmental Biology Chinese Academy of Sciences for confocal microscopy and the Center for Developmental Biology from Institute of Genetics and Developmental Biology Chinese Academy of Sciences and Dr. Jai from Core Facility for Protein Research from Institute of Biophysics Chinese Academy of Sciences for flow cytometry. We are grateful to Dr. Kuang from Purdue University and Dr. Zhu from Chinese Academy of Medical Sciences Peking Union Medical College for the kind donation of Myf5-Cre mice and Dr. Wolfrum from the Institute of Food Nutrition and Health at the ETH Zurich for the kind donation of the Ucp1-DTR mice. Xun Huang provided valuable comments on previous versions of the manuscript.Peer reviewedPublisher PD

    Behavior and Modeling of Circular Large Rupture Strain FRP-Confined Ice under Axial Compression

    Get PDF
    The application of concrete is severely limited in construction in cold areas. However, the local ice has functioned as a potential substitute for concrete for a long time. In order to make efficient use of ice to overcome its weaknesses of low strength and poor ductility, an innovative type of ice-filled large rupture strain (LRS) fiber-reinforced polymer (FRP) tube column was developed. The system consists of external LRS FRP tubes filled with plain ice or sawdust-reinforced ice. This paper presents an experimental investigation into the axial compressive behavior of such composite stub columns with circular sections. The test results confirmed that the axial compressive behavior of the ice cores was greatly improved because of the LRS FRP confinement, as well as the addition of sawdust in ice. The axial stress–strain curves of the LRS FRP-confined ice exhibited monotonically ascending bilinear shapes. Both the compressive strength and the ultimate axial strain of the confined ice were significantly enhanced with an increase of the thickness of the LRS FRP tube. A theoretical model for the LRS FRP-confined ice is proposed, in which the dilation properties (i.e., lateral strain–axial strain relation), as well as the entire axial stress–strain responses of the inner ice cores, are explicitly modeled with reasonable accuracy

    Strain and Damage Self-Sensing of Basalt Fiber Reinforced Polymer Laminates Fabricated with Carbon Nanofibers/Epoxy Composites Under Tension

    Get PDF
    This study investigated the strain and damage self-sensing capabilities of basalt fiber reinforced polymer (BFRP) laminates fabricated with carbon nanofibers (CNFs)/epoxy composites subjected to tensile loadings. The conduction mechanisms based on the tunnel conduction and percolation conduction theories as well as the damage evolution were also explored. A compensation circuit with a half-bridge configuration was proposed. The results indicated the resistivity of the CNFs/BFRP laminates and CNFs/epoxy composites exhibited similar change rule, indicating that the conductive networks of CNFs/BFRP laminates were governed by CNFs/epoxy composites. With the increase of strain under monotonic tensile loading, the electrical resistance response could be classified into three stages corresponding to different damage modes. This confirmed CNFs/BFRP laminates have excellent self-sensing abilities to monitor their internal damages. Moreover, stable and repeatable strain self-sensing capacity of the CNFs/BFRP laminates was verified under cyclic tensile loading because the electrical resistance varied synchronously with the applied strain

    Properties and Mechanisms of Self-Sensing Carbon Nanofibers/Epoxy Composites for Structural Health Monitoring

    Get PDF
    In this paper, carbon nanofibers (CNFs) with high aspect ratio were dispersed into epoxy matrix via mechanical stirring and ultrasonic treatment to fabricate self-sensing CNFs/epoxy composites. The mechanical, electrical and piezoresistive properties of the nanocomposites filled with different contents of CNFs were investigated. Based on the tunneling conduction and percolation conduction theories, the mechanisms of piezoresistive property of the nanocomposites were also explored. The experimental results show that adding CNFs can effectively enhance the compressive strengths and elastic moduli of the composites. The percolation threshold of the CNFs/epoxy composites is 0.186 vol% according to the modified General Effective Media Equation. Moreover, the stable and sensitive piezoresistive response of CNFs/epoxy composites was observed under monotonic and cyclic loadings. It can be demonstrated that adding CNFs into epoxy-based composites provides an innovative means of self-sensing, and the high sensitivity and stable piezoresistivity endow the CNFs/epoxy composites with considerable potentials as efficient compressive strain sensors for structural health monitoring of civil infrastructures

    Effect of Preparation Technologies on Properties of Reactive Powder Concrete with Nano-zirconia

    Get PDF
    Reactive powder concrete filled with 3% content of nano-zirconia (NZ) are fabricated to investigate the effect of preparation technologies on the mechanical strength. The preparation technologies involve internal (NZ is added in RPC and replaced cement )/external mixing(NZ is added in RPC but not replaced cement), ultrasonic time, high mixing speed, saturated lime water/high temperature curing media(curing in water at 90℃). The influencing mechanisms of processing method are revealed through X-ray powder diffraction (XRD) and thermogravimetry (TG) analysis, scanning electron microscope observation. Experiment results showed that high mixing speed and high temperature curing media can improve the mechanical strength obviously. The compressive strength of NZ filled reactive powder concrete with high mixing speed increase 49.9%. The compressive strength, flexural strength and splitting strength of reactive powder concrete with NZ under high temperature curing media increase 35%, 15% and 17% respectively compared with control concrete

    Developing Multifunctional Ultra-High Performance Concrete via Incorporating Hybrid Steel Wires and Fibers

    Get PDF
    Stainless steel wires (SSWs) with micro diameter and stainless steel fiber (SFs) with millimeter diameter were incorporated together to develop multifunctional ultra-high performance concrete (UHPC) in this study. The addition of 0.2 vol.% of SSWs can already improve interface between matrix and SFs, reduce the microcracks in UHPC caused by shrinkage and initial load, increase SFs’ distribution and orientation with their high flexibility, thus enhancing the flexural toughness and resulting in the occurrence of multiple cracking flexural failure mode of UHPC with less than 2.0 vol.% SFs. The hybrid SWs and SFs reinforced UHPC possesses low electrical resistivity and can sense its initial cracking, residual flexural loading and cracking development by the measured fractional change in electrical resistivity. This is mainly coming from the inhibition effect of SWs on microcracks and the extensively conductive pathway formed by both SWs and SFs. The multiple cracking failure mode under flexural load and the self-sensing capacity to monitor crack initiation and propagation of UHPC with low content hybrid wires and fibers is important to develop multifunctional UHPC, thus providing a new approach for maintaining sustainable development of infrastructures
    • 

    corecore