237,335 research outputs found

    A More Precise Extraction of |V_{cb}| in HQEFT of QCD

    Full text link
    The more precise extraction for the CKM matrix element |V_{cb}| in the heavy quark effective field theory (HQEFT) of QCD is studied from both exclusive and inclusive semileptonic B decays. The values of relevant nonperturbative parameters up to order 1/m^2_Q are estimated consistently in HQEFT of QCD. Using the most recent experimental data for B decay rates, |V_{cb}| is updated to be |V_{cb}| = 0.0395 \pm 0.0011_{exp} \pm 0.0019_{th} from B\to D^{\ast} l \nu decay and |V_{cb}| = 0.0434 \pm 0.0041_{exp} \pm 0.0020_{th} from B\to D l \nu decay as well as |V_{cb}| = 0.0394 \pm 0.0010_{exp} \pm 0.0014_{th} from inclusive B\to X_c l \nu decay.Comment: 7 pages, revtex, 4 figure

    Large Component QCD and Theoretical Framework of Heavy Quark Effective Field Theory

    Full text link
    Based on a large component QCD derived directly from full QCD by integrating over the small components of quark fields with p<E+mQ|{\bf p}| < E + m_Q, an alternative quantization procedure is adopted to establish a basic theoretical framework of heavy quark effective field theory (HQEFT) in the sense of effective quantum field theory. The procedure concerns quantum generators of Poincare group, Hilbert and Fock space, anticommutations and velocity super-selection rule, propagator and Feynman rules, finite mass corrections, trivialization of gluon couplings and renormalization of Wilson loop. The Lorentz invariance and discrete symmetries in HQEFT are explicitly illustrated. Some new symmetries in the infinite mass limit are discussed. Weak transition matrix elements and masses of hadrons in HQEFT are well defined to display a manifest spin-flavor symmetry and 1/mQ1/m_Q corrections. A simple trace formulation approach is explicitly demonstrated by using LSZ reduction formula in HQEFT, and shown to be very useful for parameterizing the transition form factors via 1/mQ1/m_Q expansion. As the heavy quark and antiquark fields in HQEFT are treated on the same footing in a fully symmetric way, the quark-antiquark coupling terms naturally appear and play important roles for simplifying the structure of transition matrix elements, and for understanding the concept of `dressed heavy quark' - hadron duality. In the case that the `longitudinal' and `transverse' residual momenta of heavy quark are at the same order of power counting, HQEFT provides a consistent approach for systematically analyzing heavy quark expansion in terms of 1/mQ1/m_Q. Some interesting features in applications of HQEFT to heavy hadron systems are briefly outlined.Comment: 59 pages, RevTex, no figures, published versio

    Large Magneto-Dielectric Effects in Orthorhombic HoMnO3 and YMnO3

    Full text link
    We have found a remarkable increase (up to 60 %) of the dielectric constant with the onset of magnetic order at 42 K in the metastable orthorhombic structures of YMnO3 and HoMnO3 that proves the existence of a strong magneto-dielectric coupling in the compounds. Magnetic, dielectric, and thermodynamic properties show distinct anomalies at the onset of the incommensurate magnetic order and thermal hysteresis effects are observed around the lock-in transition temperature at which the incommensurate magnetic order locks into a temperature independent wave vector. The orders of Mn3+ spins and Ho3+ moments both contribute to the magneto-dielectric coupling. A large magneto-dielectric effect was observed in HoMnO3 at low temperature where the dielectric constant can be tuned by an external magnetic field resulting in a decrease of up to 8 % at 7 Tesla. By comparing data for YMnO3 and HoMnO3 the contributions to the coupling between the dielectric response and Mn and Ho magnetic orders are separated.Comment: revised manuscrip

    B(s),D(s)π,K,η,ρ,K,ω,ϕB_{(s)},D_{(s)} \to \pi, K, \eta, \rho, K^*, \omega, \phi Transition Form Factors and Decay Rates with Extraction of the CKM parameters Vub|V_{ub}|, Vcs|V_{cs}|, Vcd|V_{cd}|

    Full text link
    A systematic calculation for the transition form factors of heavy to light mesons (B,Bs,D,Dsπ,K,η,ρ,K,ω,ϕB,B_s,D,D_s \to \pi, K, \eta, \rho, K^*, \omega, \phi) is carried out by using light-cone sum rules in the framework of heavy quark effective field theory. The heavy quark symmetry at the leading order of 1/mQ1/m_Q expansion enables us to reduce the independent wave functions and establish interesting relations among form factors. Some relations hold for the whole region of momentum transfer. The meson distribution amplitudes up to twist-4 including the contributions from higher conformal spin partial waves and light meson mass corrections are considered. The CKM matrix elements Vub|V_{ub}|, Vcs|V_{cs}| and Vcd|V_{cd}| are extracted from some relatively well-measured decay channels. A detailed prediction for the branching ratios of heavy to light meson decays is then presented. The resulting predictions for the semileptonic and radiative decay rates of heavy to light mesons (B,Bs,D,Dsπ,K,η,ρ,K,ω,ϕB,B_s,D,D_s \to \pi, K, \eta, \rho, K^*, \omega, \phi) are found to be compatible with the current experimental data and can be tested by more precise experiments at B-factory, LHCb, BEPCII and CLEOc.Comment: 23 pages, 32 figures, 25 tables,published version, minor corrections and references adde

    Quantum-disordered slave-boson theory of underdoped cuprates

    Full text link
    We study the stability of the spin gap phase in the U(1) slave-boson theory of the t-J model in connection to the underdoped cuprates. We approach the spin gap phase from the superconducting state and consider the quantum phase transition of the slave-bosons at zero temperature by introducing vortices in the boson superfluid. At finite temperatures, the properties of the bosons are different from those of the strange metal phase and lead to modified gauge field fluctuations. As a result, the spin gap phase can be stabilized in the quantum critical and quantum disordered regime of the boson system. We also show that the regime of quantum disordered bosons with the paired fermions can be regarded as the strong coupling version of the recently proposed nodal liquid theory.Comment: 5 pages, Replaced by the published versio
    corecore