1,635 research outputs found

    Characterization of damage in shielding structures of space vehicles under hypervelocity impact

    Get PDF
    6th Asia Pacific Workshop on Structural Health Monitoring, APWSHM, Hobart, Tasmania, Australia, 7-9 December 2016Version of RecordPublishe

    A note on isoparametric polynomials

    Full text link
    We show that any homogeneous polynomial solution of |\nabla F(x)|^2=m^2|x|^(2m-2), m>1, is either a radially symmetric polynomial F(x)=\pm |x|^m (for even m's) or it is a composition of a Chebychev polynomial and a Cartan-M\"unzner polynomial.Comment: 6 page

    Segregation of Ca at the Mg/MgO interface and its effect on grain refinement of Mg alloys

    Get PDF
    It has been reported that native MgO particles in Mg alloy melts can act as heterogeneous nucleation substrates such that grain refinement of Mg alloys is achieved. A recent study showed the addition of Ca, combined with the native MgO particles, significantly improves grain refinement of Mg and its alloys. However, the mechanism underlying the grain refining phenomenon is not well understood due to the lack of direct experimental evidence. In this work, we investigated the segregation of Ca atoms at the Mg/MgO interface and its effect on grain refinement in Mg-0.5Ca alloys by utilizing advanced analytical electron microscopy. The experimental results focus on the chemical and structural information at the interface between MgO and the Ca solute. Adsorption layers rich in Al, N and Ca have been detected on {1 1 1} facets of MgO particles, with the lattice structure resembling the structure of MgO. It is suggested that the significant grain refinement improvement can be attributed not only to the growth restriction due to the presence of Ca addition but also to the specific chemistry and structure of the adsorption layers.EPSRC is gratefully acknowledged for financial support under grant number EP/N007638 /1. The SuperSTEM Laboratory is the U.K National Research Facility for Advanced Electron Microscopy, supported by EPSRC. SHW gratefully acknowledges the China Scholarship Council (CSC) for financial support

    Solute clustering and precipitation in an Al–Cu–Mg–Ag–Si model alloy

    Get PDF
    Solute clustering and precipitation in an Al–Cu–Mg–Ag–Si model alloy has been investigated by atom probe tomography (APT) as well as high-angle annular dark-field (HAADF) imaging and electron energy loss spectroscopy (EELS) in the scanning transmission electron microscope (STEM). Nine types of solute clusters (Cu, Ag, Mg–Cu, Mg–Ag, Mg–Cu–Si, Mg–Ag–Si, Mg–Ag–Cu, Cu–Ag–Si and MgAgCuSi) were observed by APT in both the as-quenched alloy and after ageing the alloy at 180 °C for 1 h. Three types of precipitates (Ω (AlCuMgAg), θ (Al2Cu) and Mg2Si) were observed by APT and HAADF-STEM after further ageing at 180 °C for 24 h and 100 h. We propose that MgAgCu and MgAgCuSi clusters are likely to be responsible for the formation of the Ω (AlCuMgAg) phase. Furthermore, we also suggest that the θ (Al2Cu) phase forms from Cu clusters and the Mg2Si phase forms from the decomposition of MgAgSi and MgAgCuSi clusters by losing Ag to Ω phase growth. Many early binary clusters (Mg–Cu, Mg–Ag) do not seem to undergo a significant further growth during ageing; these are more likely to be transformed into complex ternary and quaternary clusters and be subsequently consumed during the growth of large clusters/precipitates. Furthermore, it is proposed that the plate-like Ω (AlCuMgAg) precipitates evolve continuously from the MgAgCu and MgAgCuSi clusters, rather than via heterogeneous nucleation on their precursors (i.e. MgAgCu and MgAgCuSi clusters). More interestingly, even after ageing at 180 °C for 100 h, the Ω (AlCuMgAg) precipitates remain coherent with the α-Al matrix, indicating that these precipitates have a high thermal stability. This can mainly be attributed to the presence of a single Mg–Ag-rich monolayer observed at the interface between the Ω precipitate and the α-Al matrix, significantly improving the coarsening resistance of the Ω (AlCuMgAg) precipitates. Our results thus reveal links between a variety of solute clusters and the different types of precipitates in the Al–Cu–Mg–Ag–Si model alloy. Such information can in the future be used to control the precipitation by tailoring solute clustering

    Repeatability of Corneal Elevation Maps in Keratoconus Patients Using the Tomography Matching Method

    Get PDF
    To assess repeatability of corneal tomography in successive measurements by Pentacam in keratoconus (KC) and normal eyes based on the Iterative Closest Point (ICP) algorithm. The study involved 143 keratoconic and 143 matched normal eyes. ICP algorithm was used to estimate six single and combined misalignment (CM) parameters, the root mean square (RMS) of the difference in elevation data pre (PreICP-RMS) and post (PosICP-RMS) tomography matching. Corneal keratometry, expressed in the form of M, J0 and J45 (power vector analysis parameters), was used to evaluate the effect of misalignment on corneal curvature measurements. The PreICP-RMS and PosICP-RMS were statistically higher (P < 0.01) in KC than normal eyes. CM increased significantly (p = 0.00), more in KC (16.76 ± 20.88 μm) than in normal eyes (5.43 ± 4.08 μm). PreICP-RMS, PosICP-RMS and CM were correlated with keratoconus grade (p < 0.05). Corneal astigmatism J0 was different (p = 0.01) for the second tomography measurements with misalignment consideration (−1.11 ± 2.35 D) or not (−1.18 ± 2.35 D), while M and J45 kept similar. KC corneas consistently show higher misalignments between successive tomography measurements and lower repeatability compared with healthy eyes. The influence of misalignment is evidently clearer in the estimation of astigmatism than spherical curvature. These higher errors appear correlated with KC progression

    PI3K mediated activation of GSK‑3β reduces at‑level primary afferent growth responses associated with excitotoxic spinal cord injury dysesthesias

    Get PDF
    Background Neuropathic pain and sensory abnormalities are a debilitating secondary consequence of spinal cord injury (SCI). Maladaptive structural plasticity is gaining recognition for its role in contributing to the development of post SCI pain syndromes. We previously demonstrated that excitotoxic induced SCI dysesthesias are associated with enhanced dorsal root ganglia (DRG) neuronal outgrowth. Although glycogen synthase kinase-3β (GSK-3β) is a known intracellular regulator neuronal growth, the potential contribution to primary afferent growth responses following SCI are undefined. We hypothesized that SCI triggers inhibition of GSK-3β signaling resulting in enhanced DRG growth responses, and that PI3K mediated activation of GSK-3β can prevent this growth and the development of at-level pain syndromes. Results Excitotoxic SCI using intraspinal quisqualic acid (QUIS) resulted in inhibition of GSK-3β in the superficial spinal cord dorsal horn and adjacent DRG. Double immunofluorescent staining showed that GSK-3βP was expressed in DRG neurons, especially small nociceptive, CGRP and IB4-positive neurons. Intrathecal administration of a potent PI3-kinase inhibitor (LY294002), a known GSK-3β activator, significantly decreased GSK-3βP expression levels in the dorsal horn. QUIS injection resulted in early (3 days) and sustained (14 days) DRG neurite outgrowth of small and subsequently large fibers that was reduced with short term (3 days) administration of LY294002. Furthermore, LY294002 treatment initiated on the date of injury, prevented the development of overgrooming, a spontaneous at-level pain related dysesthesia. Conclusions QUIS induced SCI resulted in inhibition of GSK-3β in primary afferents and enhanced at-level DRG intrinsic growth (neurite elongation and initiation). Early PI3K mediated activation of GSK-3β attenuated QUIS-induced DRG neurite outgrowth and prevented the development of at-level dysesthesias.ECU Open Access Publishing Support Fun
    corecore