251 research outputs found

    Dynamics of Vesicle Formation from Lipid Droplet: Mechanism and Controllability

    Full text link
    A coarse-grained model developed by Marrink et al. [J. Phys. Chem. B 111, 7812 (2007)] is applied to investigate vesiculation of lipid [dipalmitoylphosphatidylcholine (DPPC)] droplets in water. Three kinds of morphologies of micelles are found with increasing lipid droplet size. When the initial lipid droplet is smaller, the equilibrium structure of the droplet is a spherical micelle. When the initial lipid droplet is larger, the lipid ball starts to transform into a disk micelle or vesicle. The mechanism of vesicle formation from a lipid ball is analyzed from the self-assembly of DPPC on the molecular level, and the morphological transition from disk to vesicle with increasing droplet size is demonstrated. Importantly, we discover that the transition point is not very sharp, and for a fixed-size lipid ball, the disk and vesicle appear with certain probabilities. The splitting phenomenon, i.e., the formation of a disk/vesicle structure from a lipid droplet, is explained by applying a hybrid model of the Helfrich membrane theory. The elastic module of the DPPC bilayer and the smallest size of a lipid droplet for certain formation of a vesicle are successfully predicted.Comment: 22 pages, 11 figures Submitted to J. Chem. Phy

    Strong Photoluminescence Enhancement of MoS2 through Defect Engineering and Oxygen Bonding

    Full text link
    We report on a strong photoluminescence (PL) enhancement of monolayer MoS2 through defect engineering and oxygen bonding. Micro- PL and Raman images clearly reveal that the PL enhancement occurs at cracks/defects formed during high temperature vacuum annealing. The PL enhancement at crack/defect sites could be as high as thousands of times after considering the laser spot size. The main reasons of such huge PL enhancement include: (1) the oxygen chemical adsorption induced heavy p doping and the conversion from trion to exciton; (2) the suppression of non-radiative recombination of excitons at defect sites as verified by low temperature PL measurements. First principle calculations reveal a strong binding energy of ~2.395 eV for oxygen molecule adsorbed on an S vacancy of MoS2. The chemical adsorbed oxygen also provides a much more effective charge transfer (0.997 electrons per O2) compared to physical adsorbed oxygen on ideal MoS2 surface. We also demonstrate that the defect engineering and oxygen bonding could be easily realized by oxygen plasma irradiation. X-ray photoelectron spectroscopy further confirms the formation of Mo-O bonding. Our results provide a new route for modulating the optical properties of two dimensional semiconductors. The strong and stable PL from defects sites of MoS2 may have promising applications in optoelectronic devices.Comment: 23 pages, 9 figures, to appear in ACS Nan

    Tuning the Dzyaloshinskii-Moriya Interaction in Pt/Co/MgO heterostructures through MgO thickness

    Get PDF
    The interfacial Dzyaloshinskii-Moriya interaction (DMI) in the ferromagnetic/heavy metal ultra-thin film structures , has attracted a lot of attention thanks to its capability to stabilize Neel-type domain walls (DWs) and magnetic skyrmions for the realization of non-volatile memory and logic devices. In this study, we demonstrate that magnetic properties in perpendicularly magnetized Ta/Pt/Co/MgO/Pt heterostructures, such as magnetization and DMI, can be significantly influenced through both the MgO and the Co ultrathin film thickness. By using a field-driven creep regime domain expansion technique, we find that non-monotonic tendencies of DMI field appear when changing the thickness of MgO and the MgO thickness corresponding to the largest DMI field varies as a function of the Co thicknesses. We interpret this efficient control of DMI as subtle changes of both Pt/Co and Co/MgO interfaces, which provide a method to investigate ultra-thin structures design to achieve skyrmion electronics.Comment: 18 pages, 11 figure

    An Evaluation of Hybrid Deep Learning Models for Classifying Multiple Lower Limb Actions

    Get PDF

    Explain-then-Translate: An Analysis on Improving Program Translation with Self-generated Explanations

    Full text link
    This work explores the use of self-generated natural language explanations as an intermediate step for code-to-code translation with language models. Across three types of explanations and 19 programming languages constructed from the MultiPL-E dataset, we find the explanations to be particularly effective in the zero-shot case, improving performance by 12% on average. Improvements with natural language explanations are particularly pronounced on difficult programs. We release our dataset, code, and canonical solutions in all 19 languages.Comment: 9 pages, 4 figures, 5 tables, 48 pages total. To be published in EMNLP Findings 202

    Phase transition of a single star polymer: a Wang-Landau sampling study

    Full text link
    Star polymer is a typical nonlinear macromolecule possessing special thermodynamic behaviors for the existence of a jointing point. The thermodynamic transitions of a single star polymer are systematically studied with bond fluctuation model using Wang-Landau sampling technique. A new analysis method applying the shape factor is proposed to determine coil-globule (CG) and liquid-crystal (LC) transitions, which shows higher efficiency and precision than canonical specific heat function. It is found that the LC transition of star polymer at lower temperature obeys the identical scaling law as linear polymer. With the increase of the arm density of star polymer, however, the CG transition point, corresponding to {\theta} temperature, shifts towards the LC transition and the reason comes from the high density arms of star polymer, which requires the lower temperature for attracting force to overcome the volume excluding effects of chain. This work clearly demonstrates that the distinction of linear and star polymers in structures only affects CG transition and has no influence on LC transition.Comment: 30 pages, 10 figures, submit to JC

    Machine Learning for Multi-Action Classification of Lower Limbs for BCI

    Get PDF
    Over the past two decades, significant progress has been made in brain-computer interfaces (BCIs), devices which enable direct communications between human brains and external devices. One of the prevalent control paradigms is motor imagery-based BCI (MI-BCI), by which users imagine specific actions to express their intentions. Left-hand and right-hand motor imageries are frequently used in the MI-BCI. If a third class is needed, the imagination of both feet is usually added. However, it is relatively rare to separate feet into left lower limb and right limb in MI-BCI systems. In addition, previous studies have demonstrated that real movements can be distinguished from one another via processing the electroencephalogram (EEG). Similarly, motor imagery (MI) and movement observations (MO) can also be distinguished from one another. However, classification of left lower limb actions and right lower limb actions between MI, Real Movement (RM), and MO actions, has not been thoroughly explored. To address these questions, we performed a comprehensive experiment to collect EEG under six actions (i.e., Left-MI, Right-MI, Left-RM, Right-RM, Left-MO, and Right-MO) and used three models (convolutional neural network [CNN], support vector machine [SVM], and a K-Nearest Neighbours [KNN]) to classify these actions. Our CNN achieved the highest performance (37.77%) in the classification of six actions. Although the performance of SVM (37.21%) and KNN (25.26%) was worse, it is still better than the chance level (16.67%). Our results suggest that it is possible to distinguish between these six lower limb actions. This study has implications for developing multi-class BCI systems and promoting the research of multiple-action classification

    Association between angiotensin-converting enzyme inhibitor-induced cough and the risk of lung cancer: a Mendelian randomization study

    Get PDF
    Background: Observational studies and meta-analyses have demonstrated a positive correlation between the use of angiotensin-converting enzyme inhibitors (ACEIs) and lung cancer. However, the findings remain controversial; furthermore, the relationship between ACEI-induced cough and lung cancer development remains unknown. We used Mendelian randomization (MR) to verify the association between ACEI use, ACEI-induced cough, and the risk of lung cancer.Methods: We performed a two-sample MR analysis to determine the unconfounded relationships between ACE inhibition, which mimics the effects of ACEIs, and genetic proxies for ACEI-induced cough and lung cancer. Single nucleotide polymorphisms that imitate ACE receptors and ACEI-induced cough were collected and integrated into a meta-analysis of existing genome-wide association studies for various lung cancers. The relationship was quantified using inverse variance weighting, weighted median, and MR-Egger methods.Results: A statistically significant association was observed between ACE inhibition and the risk of small cell lung cancer for Europeans (excluding rs118121655/rs80311894). Associations were identified between ACEI-induced cough and the risk of lung cancer for Europeans, although not for Asians, and between ACEI-induced cough and lung adenocarcinoma (excluding rs360206).Conclusion: Our findings reveal a relationship between ACE inhibition and lung cancer development, as well as a significant association between ACEI-induced cough and a higher risk of lung cancer for Europeans. Patients with hypertension who experience dry cough as a side effect of ACEI use should consider switching to an alternative antihypertensive treatment
    corecore