
  

 

Abstract—Brain-computer Interfaces (BCIs) interpret 

electroencephalography (EEG) signals and translate them into 

control commands for operating external devices. The motor 

imagery (MI) paradigm is popular in this context. Recent 

research has demonstrated that deep learning models, such as 

convolutional neural network (CNN) and long short-term 

memory (LSTM), are successful in a wide range of classification 

applications. This is because CNN has the property of spatial 

invariance, and LSTM can capture temporal associations among 

features. A combination of CNN and LSTM could enhance the 

classification performance of EEG signals due to the 

complementation of their strengths. Such a combination has 

been applied to MI classification based on EEG. However, most 

studies focused on either the upper limbs or treated both lower 

limbs as a single class, with only limited research performed on 

separate lower limbs. We, therefore, explored hybrid models 

(different combinations of CNN and LSTM) and evaluated them 

in the case of individual lower limbs. In addition, we classified 

multiple actions: MI, real movements and movement 

observations using four typical hybrid models and aimed to 

identify which model was the most suitable. The comparison 

results demonstrated that no model was significantly better than 

the others in terms of classification accuracy, but all of them 

were better than the chance level. Our study informs the 

possibility of the use of multiple actions in BCI systems and 

provides useful information for further research into the 

classification of separate lower limb actions.  

I. INTRODUCTION 

Brain-computer interfacing (BCI) is an emerging 
technology, enabling direct interactions between the human 
brain and external devices or the environment. One BCI 
application is to enable people who have lost their motor 
functions to communicate and control some devices, which 
would result in improvements in their quality of life. For 
instance, motor imagery (MI)-based BCI can convert the 
motion intentions of users into control commands [1]. Hence 
in this regard, MI-based BCI can also be used for 
rehabilitation. In other words, MI can be regarded as a new 
strategy of the motor system and a rehabilitation method for 
patients with movement impairment [2]. 

Whether the user's motion intention can be correctly 
identified is one of the important indexes to evaluate the 
performance of MI-based BCI systems. In the task of limb 
movement intention identification, electroencephalography 
(EEG) is widely used due to its advantages of high temporal 

resolution, cost-effectiveness, portability and noninvasive 
resolution [3]. Multiple studies have shown that during MI, the 
frequency band power of the EEG signal varies according to 
the content of the imaginary task [4]. In particular, the µ 
rhythm (8-13 Hz) and β rhythm (14-30 Hz) frequency bands 
are modulated by MI, showing frequency power elevation 
(ERS: Event-Related Synchronization) and attenuation (ERD: 
Event-Related Desynchronization) depending on the brain 
regions [5]. This phenomenon can be utilized to classify users’ 
motion intentions based on EEG signals.  

Deep learning (DL) models, such as convolutional neural 
network (CNN), autoencoder, or long short-term memory 
(LSTM), have been used in a number of domains, including 
speech recognition, audio processing, and computer vision 
[6],[7]. Li pointed out that DL models have great potential for 
neural signal analysis and classification [8]. These models 
have also been brought to EEG signal classification and have 
become popular in the BCI domain. For example, CNN is able 
to capture spatial patterns existing in EEG signals [9], while 
LSTM has the merit of tracing temporal relationships 
contained in EEG signals [10]. To improve the ability to 
extract spatial and temporal features simultaneously, hybrid 
models consisting of CNN and LSTM networks have been 
used to learn spatial and temporal features. In the application 
of hybrid CNN-LSTM models, the combination of models is 
diverse for different studies. For example, Zhang et al. [11] 
used a one-versus-rest filter bank common spatial mode to pre-
extract the features of signals in a study with four classes of 
MI tasks. They segmented continuous EEG into time windows 
of 0.8 seconds in length. These time windows were fed into a 
hybrid DL network combining a CNN and LSTM. This model 
achieved a good classification accuracy. In other studies, 
researchers explored the model architecture. For example, 
cascaded and parallel structures were proposed. Currently, the 
most popular cascaded structure combining a CNN and LSTM 
is to use a CNN for extracting spatial features from the EEG 
signals, and then to use an LSTM for further feature extraction 
by capturing temporal information. Zhu et al. [12] used a 
cascaded hybrid model with a CNN and LSTM to classify the 
MI-related EEG signals of the left fist and right fist and 
achieved a classification accuracy of more than 80%. 
Additionally, this model was also used to convolve electrode 
channels to explore the effect of different electrode channel 
combinations on classification performance. The results 
showed that the more electrode channels in these 
combinations, the higher the classification accuracy. A parallel 
hybrid model is another way of combining CNN with LSTM. 
This method feeds EEG signals into the CNN and LSTM 
models respectively and then fuses the output features of the 
two models for classification. Li et al. [13] proposed a feature 
fusion algorithm based on the hybrid parallel CNN-LSTM 
model. They applied this hybrid CNN-LSTM model to a four-
class MI dataset. The model shows good classification 
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performance, with an average accuracy across all participants 
of 87.68%. 

There is evidence showing that MI-BCI is a promising 
method for improving the feasibility and effectiveness of the 
rehabilitation [14]. However, the success of lower limb MI-
BCI research has not been comprehensively demonstrated, and 
there is relatively little research focused on the classification 
of lower limb actions using EEG signals. In our previous 
research [15], we designed an experiment to study the 
separability of multiple lower limb actions based on EEG 
signals. This experiment is of six different actions, namely, MI 
of left lower limb (Left-MI) and right lower limb (Right-MI), 
real movement (RM) of left lower limb (Left-RM) and right 
lower limb (Right-RM), movement observations (MO) of left 
lower limb (Left-MO) and right lower limb (Right-MO). 
Based on our previous exploration, we found that these six 
actions could be separable, but it was challenging to classify 
them due to subtle differences among them. The hybrid CNN-
LSTM model has shown good classification performance in 
MI-EEG signal classification tasks. However, the types of the 
hybrid model are varied, and it is not known about their 
performance in the action classification. Therefore, in this 
paper, we evaluate four typical hybrid model frameworks and 
compare their classification performance to find out which is 
most suitable in the context of multiple lower-limb action 
classification. 

II. METHODS 

A. Data Acquisition and Processing 

The data used in this study were acquired from 28 
participants when they performed six predefined actions. Each 
of them completed six experiment sessions. Each session 
consisted of 72 trials. A fixation cross appeared at the centre 
of a screen and lasted for a randomized period from 1.5-2.5 
seconds, indicating the start of a trial. A condition cue 
(indicating one of the required actions: MI, RM or MO) 
followed and lasted for one second. After that, an arrow 
(indicating either the left or right lower limb) was added above 
the condition cue to instruct participants to start performing the 
required actions, which lasted for 6 seconds. EEG data related 
to actions were recorded by 62 electrodes arranged according 
to the layout of the international standard 10/20 system. The 
sampling rate for recording EEG signals was 250 Hz. A band-
pass filter (0.5 Hz ~ 45 Hz) was applied to the EEG signals. 
Independent component analysis was used to remove artifacts 
and reconstruct the signals for the multichannel EEG. The 
EEG segments corresponding to the periods of action 
implementation (6 seconds) were retained and used as samples 
in this study. The experiment was reviewed and approved by 
the Institutional Review Board of the National University of 
Singapore, and the Humanities, Science and Health, or Social 
Science Ethics Sub-Committee at the University of Essex. 

B. Models 

We identified the existing combinations of CNN and 
LSTM based on the literature, and categorized them into four 
types of hybrid frameworks. According to a literature review 
[16], around 30% of the studies arranged EEG into a 2D format 
as input, and about 30% of studies use time-frequency maps as 
input. In this study, time-frequency maps obtained from a 

short-time Fourier transform (STFT) were used as the input for 
each type of hybrid CNN-LSTM framework. 

 

Figure 1. Model architecture of type_1. 

 

We determined the STFT parameters according to the 
ERD/ERS time course associated with lower limb actions. 
Specifically, a one-second time window was used and slid over 
the segment with an overlapping of 0.5 seconds. Then, the 
portion of 8 to 30 Hz was extracted and used as features. This 
setting was the same for all types of models. Type_1 was 
shown in Fig. 1. EEG of each trial (6 seconds) was divided into 
3 segments. Each segment was two seconds long, for which 
feature extraction was performed. The EEG signal from each 
channel was converted into a 2D time-frequency map with the 
help of STFT. The size of the time-frequency map was 
23 × 3 (𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 × 𝑡𝑖𝑚𝑒). We then merged the maps from 
all channels into a larger 2D time-frequency map as the 
features of each segment. The size of the 2D time-frequency 
map obtained for each segment is 1426 × 3 . The time-
frequency maps were then fed into the first CNN block 
(marked as CNN_1_1 in Fig. 1), which was a monolayer 
including one convolutional layer and a batch normalization 
layer. The size of the convolution kernel was 3 × 3, and the 
number of filters was 32. The second CNN block (marked as 
CNN_1_2) had three hidden layers. Each hidden layer 
consisted of a convolution layer, a normalization layer and a 
max-pooling layer. A rectified linear unit (ReLU) was used as 
an activation function. The kernel size in each convolution 
layer was 3 × 3, and the number of filters was 4, 8, and 16, 
respectively. At each max-pooling layer, a kernel size of 2 × 2 
was applied to reduce the size of the feature matrix. The 
features outputted from CNN_1_1 were not only fed into 
CNN_1_2 for decoding spatial features further but also fed 
into an LSTM layer with 100 neurons for decoding temporal 
features. The outputs of CNN_1_2 and the LSTM were fed 
into a fully connected layer with 512 neurons and a ReLU 
activation function. Finally, a softmax layer was put at the end 
of the network to achieve the classification results.  

Another way for arranging the input EEG data is to retain 
the spatial layout of electrodes. That is, each electrode has 
physical neighbours around that electrode. Therefore, the EEG 
signals should be arranged according to the layout of the 
electrodes. In light of this fact, type_2 is with such input form. 
The entire type_2 model architecture is shown in Fig. 2. We 
kept channel locations and arranged them into a matrix with 
the padding of zeros for those locations without recording 
channels (e.g., around the corners). We applied STFT to each 
channel data to obtain a time-frequency map with the size of 
23 × 11, and then reshaped this time-frequency map into a 
vector with the dimension of 253. After repeating STFT for 
each channel, we obtained a 3D tensor in the size of 
9 × 9 × 253. This 3D tensor was fed into a CNN with 3D 
kernel. It has two convolution layers and two max-pooling 



  

layers. The size of the kernels in the two convolution layers 
was 3 × 3 × 3 .The numbers of filters were 40 and 80, 
respectively. The kernel size in the max-pooling layer was  

 

Figure 2. Model architecture of type_2 for extracting the spatio-

temporal information of EEG. 

 

2 × 2 × 2. ReLU was used as an activation function, and the 
normalization layer was added after the CNN layer, then 
expressed as features through a fully connected layer. Its 
output was then fed into LSTM layer, which contained 100 
neurons. Another fully connected layer with 100 neurons was 
followed, which was followed by a softmax layer for 
classification. 

In addition to the above two types of models, other 
researchers attempted to improve the model classification 
performance by changing the model architecture. These are the 
cascaded structure (see type_3 in Fig. 3) and the parallel 
structure (see type_4 in Fig. 4). Type_3 used 2D time-
frequency map as input after feature extraction by STFT. A 
feature vector ( 253  in length) was extracted from each 
channel, which was reshaped from the time-frequency map 
23 ×  11. All vectors of 62 channels were then formed into a 
2D matrix (62 ×  253). This feature matrix was inputted to 
the cascaded structure, which consisted of two convolutional 
layers (CNN_3_1, CNN_3_2) and two max-pooling layers 
(MAX POOLING_3_1, MAX POOLING_3_2). The size of 
the CNN_3_1 kernel was set to a matrix of 62 ×  4, which 
was mainly used to spatially convolve the input features. The 
CNN_3_2 kernel was set to 1 ×  8 , which was mainly to 
convolve the features along the temporal dimension. The 
numbers of filters were 40 and 80, respectively. The MAX 
POOLING_3_1 kernel was set to 1 ×  4,  and the MAX 
POOLING_3_2 kernel was set to 1 ×  8. Then, the features 
were fed into LSTM layer with 100 neurons after a fully 
connected layer containing 1024 neurons, and then into 
another fully connected layer containing 1024 neurons. Lastly, 
the features were passed through softmax layer to have 
classification results. 

 

Figure 3. Model architecture of type_3 with the cascaded structure of 

CNN-LSTM. 
 

Type_4 is of a parallel structure. That is, CNN and LSTM 
are used to process features in parallel. We obtained time-
frequency maps ( 23 × 11 ) for each channel and then 
assembled them into a larger time-frequency map (1426 ×
11), which was inputted into the model. CNN-LSTM parallel 
structure was used to extract spatial and temporal 
characteristics. The CNN consisted of two convolution layers 
(CNN_4_1 and CNN_4_2), two max-pooling layers and a 
fully connected layer. The size of the CNN_4_1 and CNN_4_2 
kernels was 3 × 3, and the numbers of filters were 32 and 62, 
respectively. The max-pooling size was 3 × 3. The number of 
neurons in the fully connected layer was 512. The LSTM 
consisted of an LSTM layer with 100 neurons and a fully 
connected layer with 1024 neurons. After feature extraction 
through the CNN and LSTM, feature fusion was performed 
through a fully connected layer with 512 neurons. Finally, the 
combined features derived from the fully connected layer were 
input into a softmax layer for classification. In type_3 and 
type_4 models, ReLU activation and batch normalization were 
used after each CNN layer and fully connected layer. 

 

Figure 4. Model architecture of type_4 with the parallel structure of 

CNN-LSTM. 

III. RESULTS AND DISCUSSION 

The classification performance of the four types of hybrid 
models was evaluated through five-fold cross-validation. The 
detailed classification results are shown in Table I. 

 

 



  

TABLE I. Accuracies of Four Hybrid Models in the Context of Multiple 
Action Classification 

participants 
Accuracy (%) 

Type_1 Type_2 Type_3 Type_4 

1 50.87 55.11 50.18 51.11 
2 37.27 32.87 37.74 33.11 

3 34.95 36.57 34.69 34.74 

4 50.97 51.61 50.21 50.72 

5 27.99 30.08 29.43 30.07 

6 28.00 34.05 31.71 31.27 
7 38.42 36.36 34.46 35.73 

8 27.82 22.79 21.57 20.89 

9 38.87 17.36 22.94 29.37 

10 37.96 44.17 39.11 38.13 

11 39.12 39.16 37.94 36.57 
12 34.27 40.95 37.30 34.57 

13 29.66 30.81 36.76 31.72 

14 44.92 46.77 42.11 45.63 

15 35.19 40.29 38.17 43.31 

16 41.18 37.74 37.51 39.36 
17 31.71 31.72 33.56 31.95 

18 27.99 30.57 35.86 31.24 

19 23.61 27.29 28.24 27.09 

20 34.47 34.23 35.64 32.43 

21 29.42 27.27 28.50 30.54 
22 38.62 39.06 39.72 38.76 

23 29.62 33.17 34.07 33.80 

24 31.26 38.40 37.28 35.90 

25 50.24 53.23 54.20 48.13 

26 35.64 36.09 34.25 34.46 
27 39.56 17.61 19.06 20.20 

28 34.02 35.40 32.98 33.09 

Mean±STD 35.84±7.18 35.74±9.24 35.54±7.88 35.13±7.52 

 

Statistical analysis was used to test whether there were 
significant differences between hybrid models in terms of 
classification accuracy. The statistical results showed that 
there was no significant difference between these four types of 
hybrid models (𝐹(3,108) = 0.04, 𝑝 = 0.988). Fig. 5 shows the 

means and standard deviations of the four hybrid models. It 
may be observed that the classification performance of the 
models varies considerably across participants. This may be 
due to different participants exhibiting different sensitivities 
when performing the lower limb tasks. When checking the 
classification performance within each participant, it was very 
close for all four models. Overall, Type_1 had the highest 
average accuracy, which was only marginally higher than the 
other three types of models. All types of models performed 
significantly better than the chance level (16.67%), (paired t-
test, all 𝑝 < 10−14). This result suggests that the four models 
are effective for multiple action classification. 

 

 

 

 

 

 

 

 

 

Figure 5. The means and standard deviations of the classification accuracies 
for four hybrid models.  

 

IV. CONCLUSION 

This paper evaluated the performance of hybrid models of 

CNN and LSTM for classifying multiple actions of separate 

lower limbs. Four typical models were identified and tested on 

the EEG dataset. The classification results showed that there 

was no significant difference in classification performance 

among the four types of models. However, all models 

performed significantly better than the chance level, implying 

that these four hybrid models were useful for classifying 

multiple actions.  
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