We report on a strong photoluminescence (PL) enhancement of monolayer MoS2
through defect engineering and oxygen bonding. Micro- PL and Raman images
clearly reveal that the PL enhancement occurs at cracks/defects formed during
high temperature vacuum annealing. The PL enhancement at crack/defect sites
could be as high as thousands of times after considering the laser spot size.
The main reasons of such huge PL enhancement include: (1) the oxygen chemical
adsorption induced heavy p doping and the conversion from trion to exciton; (2)
the suppression of non-radiative recombination of excitons at defect sites as
verified by low temperature PL measurements. First principle calculations
reveal a strong binding energy of ~2.395 eV for oxygen molecule adsorbed on an
S vacancy of MoS2. The chemical adsorbed oxygen also provides a much more
effective charge transfer (0.997 electrons per O2) compared to physical
adsorbed oxygen on ideal MoS2 surface. We also demonstrate that the defect
engineering and oxygen bonding could be easily realized by oxygen plasma
irradiation. X-ray photoelectron spectroscopy further confirms the formation of
Mo-O bonding. Our results provide a new route for modulating the optical
properties of two dimensional semiconductors. The strong and stable PL from
defects sites of MoS2 may have promising applications in optoelectronic
devices.Comment: 23 pages, 9 figures, to appear in ACS Nan