61 research outputs found

    Breakup of particle-laden droplets in airflow

    Full text link
    The atomisation of suspension containing liquid and dispersed particles is prevalent in many applications. Previous studies of droplet breakup mainly focused on homogeneous fluids, and the heterogeneous effect of particles on the breakup progress is unclear. In this study, the breakup of particle-laden droplets in airflow is investigated experimentally. Combining synchronised high-speed images from the side view and the 45∘^\circ view, we compare the morphology of particle-laden droplets with that of homogeneous fluids in different breakup modes. The results show that the higher effective viscosity of particle-laden droplets affects the initial deformation, and the heterogeneous effect of particles appears in the later breakup stage. To evaluate the heterogeneous effect of particles quantitatively, we eliminate the effect of the higher effective viscosity of particle-laden droplets by comparing cases corresponding to the same inviscid Weber number. The quantitative comparison reveals that the heterogeneous effect of particles accelerates the fragmentation of liquid film and promotes localised rapid piercing. A correlation length that depends on the particle diameter and the volume fraction is proposed to characterise the length scale of the concentration fluctuation under the combined effect of the initial flattening and later stretching during the droplet breakup process. Based on this correlation length, the fragment size distributions are analysed, and the scaling results agree well with the experimental data.Comment: 29 pages, 19 figure

    Melting process of frozen sessile droplets on superhydrophobic surfaces

    Full text link
    Superhydrophobic surfaces can exhibit icephobicity in many ways due to their large contact angles and small rolling angles. The melting process of frozen droplets on superhydrophobic surfaces is still unclear, hindering the understanding of surface icephobicity. In this experimental study of the melting process of frozen sessile droplets on superhydrophobic surfaces, we find two types of melting morphologies with opposite vortex directions on a single-scale nano-structured (SN) superhydrophobic substrate and a hierarchical-scale micro-nano-structured (HMN) superhydrophobic substrate. Melting pattern visualizations and flow field measurements showwed Marangoni convection and natural convection occuring in the melting sessile droplets. For the HMN superhydrophobic substrate, the internal flow was found to be dominated by Marangoni convection due to the temperature gradient along the surface of the droplet. For the SN superhydrophobic substrate, Marangoni convection was inhibited by the superhydrophobic particles at the surface of the droplet, which were shed from the fragile superhydrophobic substrate during the freezing--melting process, as confirmed by surface characterizations of the substrate and flow measurements of a water pool. These results will help researchers better understand the melting process of frozen droplets and in designing novel icephobic surfaces for numerous applications.Comment: 31 pages, 12 figure

    A Review of the Criteria and Methods of Reverse Logistics Supplier Selection

    Get PDF
    This article presents a literature review on reverse logistics (RL) supplier selection in terms of criteria and methods. A systematic view of past work published between 2008 and 2020 on Web of Science (WOS) databases is provided by reviewing, categorizing, and analyzing relevant papers. Based on the analyses of 41 articles, we propose a three-stage typology of decision-making frameworks to understanding RL supplier selection, including (a) establishment of the selection criteria; (b) calculation of the relative weights and ranking of the selection criteria; (c) ranking of alternatives (suppliers). The main discoveries of this review are as follows. (1) Attention to the field of RL supplier selection is increasing, as evidenced by the increasing number of papers in the field. With the adaption of circular economy legislation and the need resource and business resilience, it is expected that RL and RL supplier selection will be a hot topic in the near future. (2) A large number of papers take “sustainability” as the theoretical approach to carry out research and use it as the basis for determining the criteria. (3) Multi-criteria decision making (MCDM) methods have been widely used in RL supplier selection and have been constantly innovated. (4) Artificial intelligence methods are also gradually being applied. Finally, gaps in the literature are identified to provide directions for future research. (5) Value-added service is underrepresented in the current study and needs further attention

    GENerator of reduced Organic Aerosol mechanism (GENOA v1.0): An automatic generation tool of semi-explicit mechanisms

    Get PDF
    This paper describes the GENerator of Reduced Organic Aerosol Mechanisms (GENOA) that produces semi-explicit mechanisms for simulating the formation and evolution of secondary organic aerosol (SOA) in air-quality models. Using a series of predefined reduction strategies and evaluation criteria, GENOA trains and reduces SOA mechanisms from explicit chemical mechanisms (e.g., the master chemical mechanism (MCM)) under representative atmospheric conditions. As a consequence, these trained SOA mechanisms can preserve the accuracy of explicit VOC mechanisms on SOA formation (e.g., molecular structures of crucial compounds, the effect of non-ideality and hydrophilic/hydrophobic partitioning of aerosols), with a size (in terms of reaction and species numbers) that is manageable for three-dimensional aerosol modeling (e.g., regional chemical transport models). Applied to the degradation of a sesquiterpene (&beta;-caryophyllene) from MCM, GENOA builds a concise SOA mechanism (2 % of the MCM size), consisting of 23 reactions and 15 species, six of them being condensable. The generated SOA mechanism has been evaluated for its ability to reproduce SOA concentrations under varying atmospheric conditions encountered over Europe, with an average error lower than 3 %.</p

    Coalescence of immiscible sessile droplets on a partial wetting surface

    Full text link
    Droplet coalescence is a common phenomenon and plays an important role in multi-disciplinary applications. Previous studies mainly consider the coalescence of miscible liquid, even though the coalescence of immiscible droplets on a solid surface is a common process. In this study, we explore the coalescence of two immiscible droplets on a partial wetting surface experimentally and theoretically. We find that the coalescence process can be divided into three stages based on the timescales and force interactions involved, namely (I) the growth of the liquid bridge, (II) the oscillation of the coalescing sessile droplet, and (III) the formation of a partially-engulfed compound sessile droplet and the subsequent retraction. In stage I, the immiscible interface is found not to affect the scaling of the temporal evolution of the liquid bridge, which follows the same 2/3 power law as that of miscible droplets. In Stage II, by developing a new capillary timescale considering both surface and interfacial tensions, we show that the interfacial tension between the two immiscible liquids functions as a nonnegligible resistance to the oscillation which decreases the oscillation periods. In Stage III, a modified Ohnesorge number is developed to characterize the visco-capillary and inertia-capillary timescales involved during the displacement of water by oil; a new model based on energy balance is proposed to analyze the maximum retraction velocity, highlighting that the viscous resistance is concentrated in a region close to the contact line.Comment: 20 pages, 9 figure

    An Integrated Multicriteria Decision-Making Approach for Collection Modes Selection in Remanufacturing Reverse Logistics

    Get PDF
    Reverse logistics (RL) is closely related to remanufacturing and could have a profound impact on the remanufacturing industry. Different from sustainable development which is focused on economy, environment and society, circular economy (CE) puts forward more requirements on the circularity and resource efficiency of manufacturing industry. In order to select the best reverse logistics provider for remanufacturing, a multicriteria decision-making (MCDM) method considering the circular economy is proposed. In this article, a circularity dimension is included in the evaluation criteria. Then, analytic hierarchy process (AHP) is used to calculate the global weights of each criterion, which are used as the parameters in selecting RL providers. Finally, technique for order of preference by similarity to ideal solution (TOPSIS) is applied to rank reverse logistics providers with three different modes. A medium-sized engine manufacturer in China is taken as a case study to validate the applicability and effectiveness of the proposed framework
    • …
    corecore