123 research outputs found

    Learning Dynamic Priority Scheduling Policies with Graph Attention Networks

    Get PDF
    The aim of this thesis is to develop novel graph attention network-based models to automatically learn scheduling policies for effectively solving resource optimization problems, covering both deterministic and stochastic environments. The policy learning methods utilize both imitation learning, when expert demonstrations are accessible at low cost, and reinforcement learning, when otherwise reward engineering is feasible. By parameterizing the learner with graph attention networks, the framework is computationally efficient and results in scalable resource optimization schedulers that adapt to various problem structures. This thesis addresses the problem of multi-robot task allocation (MRTA) under temporospatial constraints. Initially, robots with deterministic and homogeneous task performance are considered with the development of the RoboGNN scheduler. Then, I develop ScheduleNet, a novel heterogeneous graph attention network model, to efficiently reason about coordinating teams of heterogeneous robots. Next, I address problems under the more challenging stochastic setting in two parts. Part 1) Scheduling with stochastic and dynamic task completion times. The MRTA problem is extended by introducing human coworkers with dynamic learning curves and stochastic task execution. HybridNet, a hybrid network structure, has been developed that utilizes a heterogeneous graph-based encoder and a recurrent schedule propagator, to carry out fast schedule generation in multi-round settings. Part 2) Scheduling with stochastic and dynamic task arrival and completion times. With an application in failure-predictive plane maintenance, I develop a heterogeneous graph-based policy optimization (HetGPO) approach to enable learning robust scheduling policies in highly stochastic environments. Through extensive experiments, the proposed framework has been shown to outperform prior state-of-the-art algorithms in different applications. My research contributes several key innovations regarding designing graph-based learning algorithms in operations research.Ph.D

    AMP in the wild: Learning robust, agile, natural legged locomotion skills

    Full text link
    The successful transfer of a learned controller from simulation to the real world for a legged robot requires not only the ability to identify the system, but also accurate estimation of the robot's state. In this paper, we propose a novel algorithm that can infer not only information about the parameters of the dynamic system, but also estimate important information about the robot's state from previous observations. We integrate our algorithm with Adversarial Motion Priors and achieve a robust, agile, and natural gait in both simulation and on a Unitree A1 quadruped robot in the real world. Empirical results demonstrate that our proposed algorithm enables traversing challenging terrains with lower power consumption compared to the baselines. Both qualitative and quantitative results are presented in this paper.Comment: Video: https://youtu.be/7Ggcj6Izfh

    Visualizing Road Appearance Properties in Driving Video

    Get PDF
    With the increasing videos taken from driving recorders on thousands of cars, it is a challenging task to retrieve these videos and search for important information. The goal of this work is to mine certain critical road properties in a large scale driving video data set for traffic accident analysis, sensing algorithm development, and testing benchmark. Our aim is to condense video data to compact road profiles, which contain visual features of the road environment. By visualizing road edge and lane marks in the feature space with the reduced dimension, we will further explore the road edge models influenced by road and off-road materials, weather, lighting condition, etc
    • …
    corecore