128 research outputs found

    Compressive Sensing Based Grant-Free Communication

    Get PDF
    Grant-free communication, where each user can transmit data without following the strict access grant process, is a promising technique to reduce latency and support massive users. In this thesis, compressive sensing (CS), which exploits signal sparsity to recover data from a small sample, is investigated for user activity detection (UAD), channel estimation, and signal detection in grant-free communication, in order to extract information from the signals received by base station (BS). First, CS aided UAD is investigated by utilizing the property of quasi-time-invariant channel tap delays as the prior information for the burst users in internet of things (IoT). Two UAD algorithms are proposed, which are referred to as gradient based and time-invariant channel tap delays assisted CS (g-TIDCS) and mean value based and TIDCS (m-TIDCS), respectively. In particular, g-TIDCS and m-TIDCS do not require any prior knowledge of the number of active users like the existing approaches and therefore are more practical. Second, periodic communication as one of the salient features of IoT is considered. Two schemes, namely periodic block orthogonal matching pursuit (PBOMP) and periodic block sparse Bayesian learning (PBSBL), are proposed to exploit the non-continuous temporal correlation of the received signal for joint UAD, channel estimation, and signal detection. The theoretical analysis and simulation results show that the PBOMP and PBSBL outperform the existing schemes in terms of the success rate of UAD, bit error rate (BER), and accuracy in period estimation and channel estimation. Third, UAD and channel estimation for grant-free communication in the presence of massive users that are actively connected to the BS is studied. An iteratively UAD and signal detection approach for the burst users is proposed, where the interference of the connected users on the burst users is reduced by applying a preconditioning matrix to the received signals at the BS. The proposed approach is capable of providing significant performance gains over the existing algorithms in terms of the success of UAD and BER. Last but not least, since the physical layer security becomes a critical issue for grant-free communication, the channel reciprocity in time-division duplex systems is utilized to design environment-aware (EA) pilots derived from transmission channels to prevent eavesdroppers from acquiring users’ channel information. The proposed EA-pilots based approach possesses a high level of security by scrambling the eavesdropper’s normalized mean square error performance of channel estimation

    Experimental Study on Forecasting Mathematical Model of Drying Shrinkage of Recycled Aggregate Concrete

    Get PDF
    On the basis of basic law in AASHTO2007 model, the forecasting mathematical model of drying shrinkage of recycled aggregate concrete (RAC) is established by regression analysis and experimental study. The research results show that (1) with the replacement rate of RCA increases, the drying shrinkage value of RAC increases; this trend is even more obvious in the early drying time. (2) The addition of fly ash can inhibit the drying shrinkage of RAC, but the effect is not very obvious. Specifically, the addition of fly ash will increase the shrinkage to some extent when the mixing amount is 20%. (3) The addition of expansive agent can obviously inhibit the shrinkage of RAC; the inhibition affection is better than that of fly ash. (4) The forecasting mathematical models of drying shrinkage of RAC established in this paper have high accuracy and rationality according to experiment validation and error analysis

    Efficacy of autologous bone marrow buffy coat grafting combined with core decompression in patients with avascular necrosis of femoral head: a prospective, double-blinded, randomized, controlled study

    Get PDF
    Introduction Avascular necrosis of femoral head (ANFH) is a progressive disease that often leads to hip joint dysfunction and even disability in young patients. Although the standard treatment, which is core decompression, has the advantage of minimal invasion, the efficacy is variable. Recent studies have shown that implantation of bone marrow containing osteogenic precursors into necrotic lesion of ANFH may be promising for the treatment of ANFH. Methods A prospective, double-blinded, randomized controlled trial was conducted to examine the effect of bone-marrow buffy coat (BBC) grafting combined with core decompression for the treatment of ANFH. Forty-five patients (53 hips) with Ficat stage I to III ANFH were recruited. The hips were allocated to the control group (core decompression + autologous bone graft) or treatment group (core decompression + autologous bone graft with BBC). Both patients and assessors were blinded to the treatment options. The clinical symptoms and disease progression were assessed as the primary and secondary outcomes. Results At the final follow-up (24 months), there was a significant relief in pain (P \u3c0.05) and clinical joint symptoms as measured by the Lequesne index (P \u3c0.05) and Western Ontario and McMaster Universities Arthritis Index (P \u3c0.05) in the treatment group. In addition, 33.3% of the hips in the control group have deteriorated to the next stage after 24 months post-procedure, whereas only 8% in the treatment group had further deterioration (P \u3c0.05). More importantly, the non-progression rates for stage I/II hips were 100% in the treatment group and 66.7% in the control group. Conclusion Implantation of the autologous BBC grafting combined with core decompression is effective to prevent further progression for the early stages of ANFH. Trial registration ClinicalTrials.gov identifier NCT01613612. Registered 13 December 2011

    Pore Structure and Influence of Recycled Aggregate Concrete on Drying Shrinkage

    Get PDF
    Pore structure plays an important role in the drying shrinkage of recycled aggregate concrete (RAC). High-precision mercury intrusion and water evaporation were utilized to study the pore structure of RAC, which has a different replacement rate of recycled concrete aggregate (RCA), and to analyze its influence on drying shrinkage. Finally, a fractal-dimension calculation model was established based on the principles of mercury intrusion and fractal-geometry theory. Calculations were performed to study the pore-structure fractal dimension of RAC. Results show the following. (1) With the increase in RCA content, the drying shrinkage values increase gradually. (2) Pores with the greatest impact on concrete shrinkage are those whose sizes ranging from 2.5 nm to 50 nm and from 50 nm to 100 nm. In the above two ranges, the proportions of RAC are greater than those of RC0 (natural aggregate concrete, NAC), which is the main reason the shrinkage values of RAC are greater than those of NAC. (3) The pore structure of RAC has good fractal feature, and the addition of RCA increases the complexity of the pore surface of concrete

    Multicluster-Coordination Industrial Internet of Things: The Era of Nonorthogonal Transmission

    Get PDF
    The imminent industrial Internet of Things (IIoT) aims to provide massive device connectivity and support ever-increasing data demands, putting today's production environment on the edge of a new era of innovations and changes. In a multicluster IIoT, devices may suffer severe intercluster interference due to the intensive frequency reuse among adjacent access points (APs), thus deteriorating their quality of service (QoS). To address this issue, conventional multicluster coordination in the IIoT provides orthogonal code-, frequency-, time- or spatial-domain multiple access for interference management, but this results in a waste of resources, especially in the context of the explosively increased number of devices

    Exploring the relationship between response time sequence in scale answering process and severity of insomnia: a machine learning approach

    Full text link
    Objectives: The study aims to investigate the relationship between insomnia and response time. Additionally, it aims to develop a machine learning model to predict the presence of insomnia in participants using response time data. Methods: A mobile application was designed to administer scale tests and collect response time data from 2729 participants. The relationship between symptom severity and response time was explored, and a machine learning model was developed to predict the presence of insomnia. Results: The result revealed a statistically significant difference (p<.001) in the total response time between participants with or without insomnia symptoms. A correlation was observed between the severity of specific insomnia aspects and response times at the individual questions level. The machine learning model demonstrated a high predictive accuracy of 0.743 in predicting insomnia symptoms based on response time data. Conclusions: These findings highlight the potential utility of response time data to evaluate cognitive and psychological measures, demonstrating the effectiveness of using response time as a diagnostic tool in the assessment of insomnia

    Distractor-aware Event-based Tracking

    Full text link
    Event cameras, or dynamic vision sensors, have recently achieved success from fundamental vision tasks to high-level vision researches. Due to its ability to asynchronously capture light intensity changes, event camera has an inherent advantage to capture moving objects in challenging scenarios including objects under low light, high dynamic range, or fast moving objects. Thus event camera are natural for visual object tracking. However, the current event-based trackers derived from RGB trackers simply modify the input images to event frames and still follow conventional tracking pipeline that mainly focus on object texture for target distinction. As a result, the trackers may not be robust dealing with challenging scenarios such as moving cameras and cluttered foreground. In this paper, we propose a distractor-aware event-based tracker that introduces transformer modules into Siamese network architecture (named DANet). Specifically, our model is mainly composed of a motion-aware network and a target-aware network, which simultaneously exploits both motion cues and object contours from event data, so as to discover motion objects and identify the target object by removing dynamic distractors. Our DANet can be trained in an end-to-end manner without any post-processing and can run at over 80 FPS on a single V100. We conduct comprehensive experiments on two large event tracking datasets to validate the proposed model. We demonstrate that our tracker has superior performance against the state-of-the-art trackers in terms of both accuracy and efficiency

    Macro Graph Neural Networks for Online Billion-Scale Recommender Systems

    Full text link
    Predicting Click-Through Rate (CTR) in billion-scale recommender systems poses a long-standing challenge for Graph Neural Networks (GNNs) due to the overwhelming computational complexity involved in aggregating billions of neighbors. To tackle this, GNN-based CTR models usually sample hundreds of neighbors out of the billions to facilitate efficient online recommendations. However, sampling only a small portion of neighbors results in a severe sampling bias and the failure to encompass the full spectrum of user or item behavioral patterns. To address this challenge, we name the conventional user-item recommendation graph as "micro recommendation graph" and introduce a more suitable MAcro Recommendation Graph (MAG) for billion-scale recommendations. MAG resolves the computational complexity problems in the infrastructure by reducing the node count from billions to hundreds. Specifically, MAG groups micro nodes (users and items) with similar behavior patterns to form macro nodes. Subsequently, we introduce tailored Macro Graph Neural Networks (MacGNN) to aggregate information on a macro level and revise the embeddings of macro nodes. MacGNN has already served Taobao's homepage feed for two months, providing recommendations for over one billion users. Extensive offline experiments on three public benchmark datasets and an industrial dataset present that MacGNN significantly outperforms twelve CTR baselines while remaining computationally efficient. Besides, online A/B tests confirm MacGNN's superiority in billion-scale recommender systems.Comment: 11 pages, 7 figures, accepted by The Web Conference 202
    • …
    corecore