380 research outputs found

    Relative controllability of multiagent systems with pairwise different delays in states

    Get PDF
    In this manuscript, relative controllability of leader–follower multiagent systems with pairwise different delays in states and fixed interaction topology is considered. The interaction topology of the group of agents is modeled by a directed graph. The agents with unidirectional information flows are selected as leaders, and the others are followers. Dynamics of each follower obeys a generic time-invariant delay differential equation, and the delays of agents, which satisfy a specified condition, are different one another because of the degeneration or burn-in of sensors. With a neighbor-based protocol steering, the dynamics of followers become a compact form with multiple delays. Solution of the multidelayed system without pairwise matrices permutation is obtained by improving the method in the references, and relative controllability is established via Gramian criterion. Further rank criterion of a single delay system is dealt with. Simulation illustrates the theoretical deduction

    Controllability of multi-agent systems with input and communication delays

    Get PDF
    Distributed cooperative control of multi-agent systems is broadly applied in artificial intelligence in which time delay is of great concern because of its ubiquitous. This paper considers the controllability of leader-follower multi-agent systems with input and communication delays. For the first-order systems with input delay, neighbor-based protocol is adopted to realize the interactions among agents, yielding a system with delay existed in state and control input. New notions of interval controllability and interval structural controllability for the system are defined. Algebraic criterion is established for interval controllability, and graph-theoretic interpretation is put forward for the interval structural controllability. Results imply that input delay of the multi-agent systems has significant influence on the interval controllability and interval structural controllability. Corresponding conclusions are generalized to the first-order systems and the high-order ones with communication delays, respectively. Example is attached to illustrate the work

    Cross-Attention is Not Enough: Incongruity-Aware Multimodal Sentiment Analysis and Emotion Recognition

    Full text link
    Fusing multiple modalities for affective computing tasks has proven effective for performance improvement. However, how multimodal fusion works is not well understood, and its use in the real world usually results in large model sizes. In this work, on sentiment and emotion analysis, we first analyze how the salient affective information in one modality can be affected by the other in crossmodal attention. We find that inter-modal incongruity exists at the latent level due to crossmodal attention. Based on this finding, we propose a lightweight model via Hierarchical Crossmodal Transformer with Modality Gating (HCT-MG), which determines a primary modality according to its contribution to the target task and then hierarchically incorporates auxiliary modalities to alleviate inter-modal incongruity and reduce information redundancy. The experimental evaluation on three benchmark datasets: CMU-MOSI, CMU-MOSEI, and IEMOCAP verifies the efficacy of our approach, showing that it: 1) outperforms major prior work by achieving competitive results and can successfully recognize hard samples; 2) mitigates the inter-modal incongruity at the latent level when modalities have mismatched affective tendencies; 3) reduces model size to less than 1M parameters while outperforming existing models of similar sizes.Comment: *Equal contributio

    Fast Graph Sampling Set Selection Using Gershgorin Disc Alignment

    Full text link
    Graph sampling set selection, where a subset of nodes are chosen to collect samples to reconstruct a smooth graph signal, is a fundamental problem in graph signal processing (GSP). Previous works employ an unbiased least-squares (LS) signal reconstruction scheme and select samples via expensive extreme eigenvector computation. Instead, we assume a biased graph Laplacian regularization (GLR) based scheme that solves a system of linear equations for reconstruction. We then choose samples to minimize the condition number of the coefficient matrix---specifically, maximize the smallest eigenvalue λmin\lambda_{\min}. Circumventing explicit eigenvalue computation, we maximize instead the lower bound of λmin\lambda_{\min}, designated by the smallest left-end of all Gershgorin discs of the matrix. To achieve this efficiently, we first convert the optimization to a dual problem, where we minimize the number of samples needed to align all Gershgorin disc left-ends at a chosen lower-bound target TT. Algebraically, the dual problem amounts to optimizing two disc operations: i) shifting of disc centers due to sampling, and ii) scaling of disc radii due to a similarity transformation of the matrix. We further reinterpret the dual as an intuitive disc coverage problem bearing strong resemblance to the famous NP-hard set cover (SC) problem. The reinterpretation enables us to derive a fast approximation scheme from a known SC error-bounded approximation algorithm. We find an appropriate target TT efficiently via binary search. Extensive simulation experiments show that our disc-based sampling algorithm runs substantially faster than existing sampling schemes and outperforms other eigen-decomposition-free sampling schemes in reconstruction error.Comment: Very fast deterministic graph sampling set selection algorithm without explicit eigen-decompositio

    FFA-Net: Feature Fusion Attention Network for Single Image Dehazing

    Full text link
    In this paper, we propose an end-to-end feature fusion at-tention network (FFA-Net) to directly restore the haze-free image. The FFA-Net architecture consists of three key components: 1) A novel Feature Attention (FA) module combines Channel Attention with Pixel Attention mechanism, considering that different channel-wise features contain totally different weighted information and haze distribution is uneven on the different image pixels. FA treats different features and pixels unequally, which provides additional flexibility in dealing with different types of information, expanding the representational ability of CNNs. 2) A basic block structure consists of Local Residual Learning and Feature Attention, Local Residual Learning allowing the less important information such as thin haze region or low-frequency to be bypassed through multiple local residual connections, let main network architecture focus on more effective information. 3) An Attention-based different levels Feature Fusion (FFA) structure, the feature weights are adaptively learned from the Feature Attention (FA) module, giving more weight to important features. This structure can also retain the information of shallow layers and pass it into deep layers. The experimental results demonstrate that our proposed FFA-Net surpasses previous state-of-the-art single image dehazing methods by a very large margin both quantitatively and qualitatively, boosting the best published PSNR metric from 30.23db to 36.39db on the SOTS indoor test dataset. Code has been made available at GitHub.Comment: Accepted by AAAI202

    Dosage effects of BDNF Val66Met polymorphism on cortical surface area and functional connectivity

    Get PDF
    The single nucleotide polymorphism (SNP) that leads to a valine-to-methionine substitution at codon 66 (Val66Met) in BDNF is correlated with differences in cognitive and memory functions, as well as with several neurological and psychiatric disorders.MRIstudies have already shown that this genetic variant contributes to changes in cortical thickness and volume, but whether the Val66Met polymorphism affects the cortical surface area of healthy subjects remains unclear. Here, we used multimodal MRI to study whether this polymorphism would affect the cortical morphology and resting-state functional connectivity of a large sample of healthy Han Chinese human subjects. An SNP-wise general linear model analysis revealed a "dosage effect" of the Met allele, specifically a stepwise increase in cortical surface area of the right anterior insular cortex with increasing numbers of the Met allele. Moreover, we found enhanced functional connectivity between the anterior insular and the dorsolateral prefrontal cortices that was linked with the dosage of the Met allele. In conclusion, these data demonstrated a "dosage effect" ofBDNFVal66Met on normal cortical structure and function, suggesting anewpath for exploring the mechanisms underlying the effects of genotype on cognition
    corecore