15 research outputs found

    Solar photocatalytic degradation of parabens using UiO-66-NH2

    Full text link
    The photocatalytic degradation of methylparaben was investigated under simulated solar light using a synthesised metal–organic framework (UiO-66-NH2). For that purpose, the pollutant was spiked in different water matrices: distilled water, water from Lima River (Northwestern Portugal), and urban wastewater. Complete removal of the methylparaben in distilled water was achieved in 1 h reaction. In natural water matrices, the photocatalytic performance decreased to 70% removal after 3 h reaction, owing to the physical–chemical properties of the water samples. The UiO-66-NH2 photocatalyst revealed high stability under the continuous mode, reaching a steady state in 5 h, from which the removal percentage was kept constant for 25 h. The photocatalytic degradation of methylparaben gave five main reaction byproducts and four short-chain carboxylic acids, identified by LC/ESI-MS and UHPLC analyses, respectively. The mechanism of degradation was investigated by using selective scavengers. Photogenerated holes and superoxide radicals were found as the main species responsible for the degradation of methylparaben. The abatement of other parabens (as ethyl- and propylparaben) was also evaluated, being the conversion influenced by the length of the alkyl side chain. The results of this study give a comprehensive sight into the effective photocatalytic remediation of parabens using UiO-66-NH2Authors acknowledge Spanish State Research Agency (PID2019- 106186RBI00/AEI/10.13039/501100011033). M. Peñas-Garzón is indebted to Spanish MECD (FPU16/00576 grant) and MICIU (EST19/ 00068). M.J.S. thanks to Project POCI-01-0145-FEDER-030674 (MicroPhotOGen, PTDC/NAN-MAT/30674/2017) funded by ERDF through COMPETE2020 - Programa Operacional Competitividade e Internacionalizaçao (POCI) – and by national funds through FCT - Fundaçao para a Ciência e a Tecnologia. We would like to thank the scientific collaboration financially supported by: Base-UIDB/50020/ 2020 and Programmatic-UIDP/50020/2020 Funding of Associate Laboratory LSRE-LCM - funded by national funds through FCT/MCTES (PIDDAC). Authors thank the Research Support Services of the Universidad Autónoma de Madrid (SIdI), University of Extremadura (SAIUEx), University of Málaga (SCAI) and Universidad Complutense of Madrid (CAI

    Temporal and spatial analysis of Neural tube defects and detection of geographical factors in Shanxi Province, China

    Get PDF
    Background: Neural tube defects (NTDs) are congenital birth defects that occur in the central nervous system, and they have the highest incidence among all birth defects. Shanxi Province in China has the world's highest rate of NTDs. Since the 1990s, China's government has worked on many birth defect prevention programs to reduce the occurrence of NTDs, such as pregnancy planning, health education, genetic counseling, antenatal ultrasonography and serological screening. However, the rate of NTDs in Shanxi Province is still higher than the world's average morbidity rate after intervention. In addition, Shanxi Province has abundant coal reserves, and is the largest coal production province in China. The objectives of this study are to determine the temporal and spatial variation of the NTD rate in rural areas of Shanxi Province, China, and identify geographical environmental factors that were associated with NTDs in the risk area. Methods: In this study, Heshun County and Yuanping County in Shanxi Province, which have high incidence of NTDs, were selected as the study areas. Two paired sample T test was used to analyze the changes in the risk of NTDs from the time dimension. Ripley's k function and spatial filtering were combined with geographic information system (GIS) software to study the changes in the risk of NTDs from the spatial dimension. In addition, geographical detectors were used to identify the risk geographical environmental factors of NTDs in the study areas, especially the areas close to the coal sites and main roads. Results: In both Heshun County and Yuanping County, the incidence of NTDs was significantly (P<0.05) reduced after intervention. The results from spatial analysis showed that significant spatial heterogeneity existed in both counties. NTD clusters were still identified in areas close to coal sites and main roads after interventions. This study also revealed that the elevation, fault and soil types always had a larger influence on the incidence of NTDs in our study areas. In addition, distance to the river was a risk factor of NTDs in areas close to the coal sites and main roads. Conclusion: The existing interventions may have played an important role to reduce the incidence of NTDs. However, there is still spatial heterogeneity in both counties after using the traditional intervention methods. The government needs to take more measures to strengthen the environmental restoration to prevent the occurrence of NTDs, especially those areas close to coal sites and main roads. The outcome of this research provides an important theoretical basis and technical support for the government to prevent the occurrence of NTDs

    Presentation1_Celastrol inhibits store operated calcium entry and suppresses psoriasis.PPTX

    No full text
    Introduction: Psoriasis is an inflammatory autoimmune skin disease that is hard to cure and prone to relapse. Currently available global immunosuppressive agents for psoriasis may cause severe side effects, thus it is crucial to identify new therapeutic reagents and druggable signaling pathways for psoriasis.Methods: To check the effects of SOCE inhibitors on psoriasis, we used animal models, biochemical approaches, together with various imaging techniques, including calcium, confocal and FRET imaging.Results and discussion: Store operated calcium (Ca2+) entry (SOCE), mediated by STIM1 and Orai1, is crucial for the function of keratinocytes and immune cells, the two major players in psoriasis. Here we showed that a natural compound celastrol is a novel SOCE inhibitor, and it ameliorated the skin lesion and reduced PASI scores in imiquimod-induced psoriasis-like mice. Celastrol dose- and time-dependently inhibited SOCE in HEK cells and HaCaT cells, a keratinocyte cell line. Mechanistically, celastrol inhibited SOCE via its actions both on STIM1 and Orai1. It inhibited Ca2+ entry through constitutively-active Orai1 mutants independent of STIM1. Rather than blocking the conformational switch and oligomerization of STIM1 during SOCE activation, celastrol diminished the transition from oligomerized STIM1 into aggregates, thus locking STIM1 in a partially active state. As a result, it abolished the functional coupling between STIM1 and Orai1, diminishing SOCE signals. Overall, our findings identified a new SOCE inhibitor celastrol that suppresses psoriasis, suggesting that SOCE pathway may serve as a new druggable target for treating psoriasis.</p
    corecore