11 research outputs found

    Experimental Demonstration of High-Rate Discrete-Modulated Continuous-Variable Quantum Key Distribution System

    Full text link
    A high-rate continuous-variable quantum key distribution (CV-QKD) system based on high-order discrete modulation is experimentally investigated. With the help of the novel system scheme, effective digital signal processing algorithms and advanced analytical security proof method, the transmission results of 5 km, 10 km, 25 km, and 50 km are achieved for the 1 GBaud optimized quantum signals. Correspondingly, the asymptotic secret key rate (SKR) is 288.421 Mbps, 159.395 Mbps, 50.004 Mbps and 7.579 Mbps for discrete Gaussian (DG) 64QAM, and 326.708 Mbps, 179.348 Mbps, 50.623 Mbps and 9.212 Mbps for DG 256QAM. Under the same parameters, the achieved SKRs of DG 256QAM is almost same to ideal Gaussian modulation. In this case, the demonstrated high-rate discrete modulated CV-QKD system has the application potential for high speed security communication under tens of kilometers.Comment: 5 pages, 5 figure

    Sub-Mbps key-rate continuous-variable quantum key distribution with local-local-oscillator over 100 km fiber

    Full text link
    We experimentally demonstrated a sub-Mbps key rate Gaussian-modulated coherent-state continuous-variable quantum key distribution (CV-QKD) over 100 km transmission distance. To efficiently control the excess noise, the quantum signal and the pilot tone are co-transmitted in fiber channel based on wide-band frequency and polarization multiplexing methods. Furthermore, a high-accuracy data-assisted time domain equalization algorithm is carefully designed to compensate the phase noise and polarization variation in low signal-to-noise ratio. The asymptotic secure key rate (SKR) of the demonstrated CV-QKD is experimentally evaluated to be 10.36 Mbps, 2.59 Mbps, and 0.69 Mbps over transmission distance of 50 km, 75 km, and 100 km, respectively. The experimental demonstrated CV-QKD system significantly improves transmission distance and SKR compared to the state-of-art GMCS CV-QKD experimental results, and shows the potential for long-distance and high-speed secure quantum key distribution.Comment: 4 pages, 7 figure

    A newly identified virus in the family potyviridae encodes two leader cysteine proteases in tandem that evolved contrasting RNA silencing suppression functions

    Get PDF
    Potyviridae is the largest family of plant-infecting RNA viruses and includes many agriculturally and economically important viral pathogens. The viruses in the family, known as potyvirids, possess single-stranded, positive-sense RNA genomes with polyprotein processing as a gene expression strategy. The N-terminal regions of potyvirid polyproteins vary greatly in sequence. Previously, we identified a novel virus species within the family, Areca palm necrotic spindle-spot virus (ANSSV), which was predicted to encode two cysteine proteases, HCPro1 and HCPro2, in tandem at the N-terminal region. Here, we present evidence showing self-cleavage activity of these two proteins and define their cis-cleavage sites. We demonstrate that HCPro2 is a viral suppressor of RNA silencing (VSR), and both the variable N-terminal and conserved C-terminal (protease domain) moieties have antisilencing activity. Intriguingly, the N-terminal region of HCPro1 also has RNA silencing suppression activity, which is, however, suppressed by its C-terminal protease domain, leading to the functional divergence of HCPro1 and HCPro2 in RNA silencing suppression. Moreover, the deletion of HCPro1 or HCPro2 in a newly created infectious clone abolishes viral infection, and the deletion mutants cannot be rescued by addition of corresponding counterparts of a potyvirus. Altogether, these data suggest that the two closely related leader proteases of ANSSV have evolved differential and essential functions to concertedly maintain viral viability.This work is supported by grants from the Hainan Major Research Fund of Science and Technology (ZDKJ201817), the National Natural Science Foundation of China (32060603), and the Central Public-interest Scientific Institution Basal Research Fund for the Chinese Academy of Tropical Agricultural Sciences (grant no. 19CXTD-33).Peer reviewe

    High-speed Gaussian modulated continuous-variable quantum key distribution with a local local oscillator based on pilot-tone-assisted phase compensation

    Full text link
    A high-speed Gaussian modulated continuous-variable quantum key distribution (CVQKD) with a local local oscillator (LLO) is experimentally demonstrated based on pilot-tone-assisted phase compensation. In the proposed scheme, the frequency-multiplexing and polarization-multiplexing techniques are used for the separate transmission and heterodyne detection between quantum signal and pilot tone, guaranteeing no crosstalk from strong pilot tone to weak quantum signal and different detection requirements of low-noise for quantum signal and high-saturation limitation for pilot tone. Moreover, compared with the conventional CVQKD based on homodyne detection, the proposed LLO-CVQKD scheme can measure X and P quadrature simultaneously using heterodyne detection without need of extra random basis selection. Besides, the phase noise, which contains the fast-drift phase noise due to the relative phase of two independent lasers and the slow-drift phase noise introduced by quantum channel disturbance, has been compensated experimentally in real time, so that a low level of excess noise with a 25km optical fiber channel is obtained for the achievable secure key rate of 7.04 Mbps in the asymptotic regime and 1.85 Mbps under the finite-size block of 10^7

    Performance analysis for OFDM-based multi-carrier continuous-variable quantum key distribution with arbitrary modulation protocol

    Full text link
    Multi-carrier continuous-variable quantum key distribution (CV-QKD) is considered to be a promising way to boost the secret key rate (SKR) over the existing single-carrier CV-QKD scheme. However, the extra excess noise induced in the imperfect multi-carrier quantum state preparation process of N subcarriers will limit the performance of the system. Here, a systematic modulation noise model is proposed for the multi-carrier CV-QKD based on the orthogonal frequency division multiplexing (OFDM). Subsequently, the performance of multi-carrier CV-QKD with arbitrary modulation protocol (e.g. QPSK, 256QAM and Gaussian modulation protocol) can be quantitatively evaluated by combining the security analysis method of the single-carrier CV-QKD. Under practical system parameters, the simulation results show that the SKR of the multi-carrier CV-QKD can still be significantly improved by increasing the carrier number N even with imperfect practical modulations. Specifically, the total SKR of multi-carrier CV-QKD can be optimized by carefully choosing N. The proposed model provides a feasible theoretical framework for the future multi-carrier CV-QKD experimental implementation.Comment: 15 pages, 14 figure

    A rapid and nondestructive method to determine the distribution map of protein, carbohydrate and sialic acid on Edible bird’s nest by hyper-spectral imaging and chemometrics

    Get PDF
    Edible bird’s nest (EBN) is a precious functional food in Southeast Asia. A rapid and nondestructive method for determining the distribution map of protein content (PC), carbohydrate content (CC) and sialic acid content (SAC) on EBN sample was proposed. Firstly, 60 EBNs were used for hyperspectral image acquisition, and components content (PC, CC and SAC) were determined by chemical analytical methods. Secondly, the spectral signals of EBN hyperspectral image and EBN components content were used to build calibration models. Thirdly, spectra of each pixel in EBN hyperspectral image were extracted, and these spectra were substituted in the calibration models to predict the PC, CC and SAC of each pixel in the EBN image, so the visual distribution maps of PC, CC and SAC on the whole EBN were obtained. It is the first time to show the distribution tendency of PC, CC and SAC on the whole EBN sample

    Simultaneous Determination for Nine Kinds of N-Nitrosamines Compounds in Groundwater by Ultra-High-Performance Liquid Chromatography Coupled with Triple Quadrupole Mass Spectrometry

    No full text
    The ability to effectively detect N-nitrosamine compounds by liquid chromatography–tandem mass spectrometry presents a challenge due to the problems of high detection limits and difficulty in simultaneous N-nitrosamine compound detection. In order to overcome these limitations, this study reduced the detection limit of N-nitrosamine compounds by applying n-hexane pre-treatment to remove non-polar impurities before the conventional process of column extraction. In addition, ammonium acetate was used as the mobile phase to enhance the retention of nitrosamine target substances on the chromatographic column, with formic acid added to the mobile phase to improve the ionization level of N-nitrosodiphenylamine, to achieve the simultaneous detection of multiple N-nitrosamine compounds. Applying these modifications to the established detection method allowed the rapid and accurate detection of N-nitrosamine in water within 12 min. The linear relationship, detection limit, quantification limit and sample spiked recovery rate of nine types of nitrosamine compound were investigated, showing that the correlation coefficient ranged from 0.9985–0.9999, while the detection limits of the instrument and the method were 0.280–0.928 µg·L−1 and 1.12–3.71 ng·L−1, respectively. The spiked sample recovery rate ranged from 64.2–83.0%, with a standard deviation of 2.07–8.52%, meeting the requirements for trace analysis. The method was applied to the detection of N-nitrosamine compounds in nine groundwater samples in Wuhan, China, and showed that the concentrations of N-nitrosodimethylamine and NDEA were relatively high, highlighting the need to monitor water bodies with very low levels of pollutants and identify those requiring treatment

    The Effect of the Histone Chaperones HSPA8 and DEK on Tumor Immunity in Hepatocellular Carcinoma

    No full text
    Complex immune contexture leads to resistance to immunotherapy in hepatocellular carcinoma (HCC), and the need for new potential biomarkers of immunotherapy in HCC is urgent. Histone chaperones are vital determinants of gene expression and genome stability that regulate tumor development. This study aimed to investigate the effect of histone chaperones on tumor immunity in HCC. Bioinformatics analyses were initially performed using The Cancer Genome Atlas (TCGA) database, and were validated using the Gene Expression Omnibus (GEO) database and the International Cancer Genome Consortium (ICGC) database. Immune-related histone chaperones were screened with the Spearman rank coefficient. Consensus clustering was utilized to divide the HCC samples into two clusters. ESTIMATE, CIBERSORT and ssGSEA analyses were performed to assess immune infiltration. The expression of immunomodulatory genes, chemokines and chemokine receptors was analyzed to evaluate sensitivity to immunotherapy. The differentially expressed genes (DEGs) were included in weighted gene coexpression network analysis (WGCNA) to identify the hub genes. Enrichment analyses were used to investigate the functions of the hub genes. The Kaplan-Meier method and log-rank test were conducted to draw survival curves. A Cox regression analysis was utilized to identify independent risk factors affecting prognosis. HSPA8 and DEK were screened out from 36 known histone chaperones based on their strongest correlation with the ESTIMATE score. Cluster 2, with high HSPA8 expression and low DEK expression, tended to have stronger immune infiltration and better sensitivity to immunotherapy than Cluster 1, with low HSPA8 expression and high DEK expression. Furthermore, WGCNA identified 12 hub genes closely correlated with immune infiltration from the DEGs of the two clusters, of which FBLN2 was proven to be an independent protective factor of HCC patients. HSPA8 and DEK are expected to be biomarkers for precisely predicting the effect of immunotherapy, and FBLN2 is expected to be a therapeutic target of HCC

    Polarization Attack on Continuous-Variable Quantum Key Distribution with a Local Local Oscillator

    No full text
    The estimation of phase noise of continuous-variable quantum key distribution protocol with a local local oscillator (LLO CVQKD), as a major process in quantifying the secret key rate, is closely relevant to the intensity of the phase reference. However, the transmission of the phase reference through the insecure quantum channel is prone to be exploited by the eavesdropper (Eve) to mount attacks. Here, we introduce a polarization attack scheme against the phase reference. Presently, in a practical LLO CVQKD system, only part of the phase reference pulses are measured to compensate for the polarization drift of the quantum signal pulses in a compensation cycle due to the limited polarization measurement rate, while the other part of the phase reference pulses are not measured. We show that Eve can control the phase noise by manipulating the polarization direction of the unmeasured phase reference to hide her attack on the quantum signal. Simulations show that Eve can obtain partial or total key rates information shared between Alice and Bob as the transmission distance increases. Improving the polarization measurement rate to 100% or monitoring the phase reference intensity in real-time is of great importance to protect the LLO CVQKD from polarization attack

    Characteristics of circular rna expression profiles of porcine granulosa cells in healthy and atretic antral follicles

    No full text
    Circular RNAs (circRNAs) are thought to play essential roles in multiple biological processes, including apoptosis, an important process in antral follicle atresia. We aimed to investigate the potential involvement of circRNAs in granulosa cell apoptosis and thus antral follicle atresia. CircRNA expression profiles were generated from porcine granulosa cells isolated from healthy antral (HA) and atretic antral (AA) follicles. Over 9632 circRNAs were identified, of which 62 circRNAs were differentially expressed (DE-circRNAs). Back-splicing, RNase R resistance, and stability of DE-circRNAs were validated, and miRNA binding sites and related target genes were predicted. Two exonic circRNAs with low false discovery rate (FDR) high fold change, miRNA binding sites, and relevant biological functions—circ_CBFA2T2 and circ_KIF16B—were selected for further characterization. qRT-PCR and linear regression analysis confirmed expression and correlation of the targeted genes—the antioxidant gene GCLC (potential target of circ_CBFA2T2) and the apoptotic gene TP53 (potential target of circ_KIF16B). Increased mRNA content of TP53 in granulosa cells of AA follicles was further confirmed by strong immunostaining of both p53 and its downstream target pleckstrin homology like domain family a member 3 (PHLDA3) in AA follicles compared to negligible staining in granulosa cells of HA follicles. Therefore, we concluded that aberrantly expressed circRNAs presumably play a potential role in antral follicular atresia.</p
    corecore