44 research outputs found

    Urban Spatial Structure and the Potential for Vehicle Miles Traveled Reduction: The Effects of Accessibility to Jobs within and beyond Employment Sub-centers

    Full text link
    This research examines the relationship between urban polycentric spatial structure and driving. We identified 46 employment sub-centers in the Los Angeles Combined Statistical Area and calculated access to jobs that are within and beyond these sub-centers. To address potential endogeneity problems, we use access to historically important places and transportation infrastructure in the early 20th century as instrumental variables for job accessibility indices. Our Two-stage Tobit models show that access to jobs is negatively associated with household vehicle miles traveled in this region. Among various accessibility measures, access to jobs outside sub-centers has the largest elasticity (-0.155). We examine the location of places in the top quintile of access to non-centered jobs and find that those locations are often inner ring suburban developments, near the core of the urban area and not far from sub-centers, suggesting that strategies of infill development that fill in the gaps between sub-centers, rather than focusing on already accessible downtowns and large sub-centers, may be the best land use approach to reduce VMT

    LMC: Fast Training of GNNs via Subgraph Sampling with Provable Convergence

    Full text link
    The message passing-based graph neural networks (GNNs) have achieved great success in many real-world applications. However, training GNNs on large-scale graphs suffers from the well-known neighbor explosion problem, i.e., the exponentially increasing dependencies of nodes with the number of message passing layers. Subgraph-wise sampling methods -- a promising class of mini-batch training techniques -- discard messages outside the mini-batches in backward passes to avoid the neighbor explosion problem at the expense of gradient estimation accuracy. This poses significant challenges to their convergence analysis and convergence speeds, which seriously limits their reliable real-world applications. To address this challenge, we propose a novel subgraph-wise sampling method with a convergence guarantee, namely Local Message Compensation (LMC). To the best of our knowledge, LMC is the {\it first} subgraph-wise sampling method with provable convergence. The key idea of LMC is to retrieve the discarded messages in backward passes based on a message passing formulation of backward passes. By efficient and effective compensations for the discarded messages in both forward and backward passes, LMC computes accurate mini-batch gradients and thus accelerates convergence. We further show that LMC converges to first-order stationary points of GNNs. Experiments on large-scale benchmark tasks demonstrate that LMC significantly outperforms state-of-the-art subgraph-wise sampling methods in terms of efficiency

    The Strong Consistency of the Estimator of Fixed-Design Regression Model under Negatively Dependent Sequences

    Get PDF
    We study the strong consistency of estimator of fixed design regression model under negatively dependent sequences by using the classical Rosenthal-type inequality and the truncated method. As an application, the strong consistency for the nearest neighbor estimator is obtained

    Chat-3D v2: Bridging 3D Scene and Large Language Models with Object Identifiers

    Full text link
    Recent research has evidenced the significant potentials of Large Language Models (LLMs) in handling challenging tasks within 3D scenes. However, current models are constrained to addressing object-centric tasks, where each question-answer pair focuses solely on an individual object. In real-world applications, users may pose queries involving multiple objects or expect for answers that precisely reference various objects. We introduce the use of object identifiers to freely reference objects during a conversation. While this solution appears straightforward, it presents two main challenges: 1) How to establish a reliable one-to-one correspondence between each object and its identifier? 2) How to incorporate complex spatial relationships among dozens of objects into the embedding space of the LLM? To address these challenges, we propose a two-stage alignment method, which involves learning an attribute-aware token and a relation-aware token for each object. These tokens capture the object's attributes and spatial relationships with surrounding objects in the 3D scene. Once the alignment is established, we can fine-tune our model on various downstream tasks using instruction tuning. Experiments conducted on traditional datasets like ScanQA, ScanRefer, and Nr3D/Sr3D showcase the effectiveness of our proposed method. Additionally, we create a 3D scene captioning dataset annotated with rich object identifiers, with the assistant of GPT-4. This dataset aims to further explore the capability of object identifiers in effective object referencing and precise scene understanding

    Distilling Coarse-to-Fine Semantic Matching Knowledge for Weakly Supervised 3D Visual Grounding

    Full text link
    3D visual grounding involves finding a target object in a 3D scene that corresponds to a given sentence query. Although many approaches have been proposed and achieved impressive performance, they all require dense object-sentence pair annotations in 3D point clouds, which are both time-consuming and expensive. To address the problem that fine-grained annotated data is difficult to obtain, we propose to leverage weakly supervised annotations to learn the 3D visual grounding model, i.e., only coarse scene-sentence correspondences are used to learn object-sentence links. To accomplish this, we design a novel semantic matching model that analyzes the semantic similarity between object proposals and sentences in a coarse-to-fine manner. Specifically, we first extract object proposals and coarsely select the top-K candidates based on feature and class similarity matrices. Next, we reconstruct the masked keywords of the sentence using each candidate one by one, and the reconstructed accuracy finely reflects the semantic similarity of each candidate to the query. Additionally, we distill the coarse-to-fine semantic matching knowledge into a typical two-stage 3D visual grounding model, which reduces inference costs and improves performance by taking full advantage of the well-studied structure of the existing architectures. We conduct extensive experiments on ScanRefer, Nr3D, and Sr3D, which demonstrate the effectiveness of our proposed method.Comment: ICCV202

    The Minnesota Bicycle and Pedestrian Counting Initiative: Methodologies for Non-motorized Traffic Monitoring

    Get PDF
    The purpose of this project was to develop methodologies for monitoring non-motorized traffic in Minnesota. The project included an inventory of bicycle and pedestrian monitoring programs; development of guidance for manual, field counts; pilot field counts in 43 Minnesota communities; and analyses of automated, continuous-motorized counts from locations in Minneapolis. The analyses showed hourly, daily, and monthly patterns are comparable despite variation in volumes and that adjustment factors can be used to extrapolate short-term counts and estimate annual traffic. The project technical advisory panel made five recommendations: (1) MnDOT should continue and institutionalize coordination of annual statewide manual bicycle and pedestrian counts; (2) MnDOT should improve methods for reporting results of field counts and explore web-based programs for data reporting and analysis; (3) MnDOT should lead efforts to deploy and demonstrate the feasibility of new automated technologies for bicycle and pedestrian counting, focusing on new technologies not presently used in Minnesota; (4) MnDOT should begin integration of non-motorized traffic counts from existing automated, continuous counters in Minneapolis into its new databases for vehicular traffic monitoring data; and (5) MnDOT should work with local governments and explore institutional arrangements for (a) establishing a network of permanent, automated continuous monitoring sites across the state and (b) sharing and deploying new technologies for short-duration monitoring to generate traffic counts that provide a more comprehensive understanding of spatial variation in nonmotorized traffic volumes.Hubert H. Humphrey School of Public Affairs, University of Minnesota; Department of Civil Engineering, University of Minnesota; Sol Price School of Public Policy, University of Southern Californi

    Connecting Multi-modal Contrastive Representations

    Full text link
    Multi-modal Contrastive Representation learning aims to encode different modalities into a semantically aligned shared space. This paradigm shows remarkable generalization ability on numerous downstream tasks across various modalities. However, the reliance on massive high-quality data pairs limits its further development on more modalities. This paper proposes a novel training-efficient method for learning MCR without paired data called Connecting Multi-modal Contrastive Representations (C-MCR). Specifically, given two existing MCRs pre-trained on (A, B) and (B, C) modality pairs, we project them to a new space and use the data from the overlapping modality B to aligning the two MCRs in the new space. Meanwhile, since the modality pairs (A, B) and (B, C) are already aligned within each MCR, the connection learned by overlapping modality can also be transferred to non-overlapping modality pair (A, C). To unleash the potential of C-MCR, we further introduce a semantic-enhanced inter- and intra-MCR connection method. We first enhance the semantic consistency and completion of embeddings across different modalities for more robust alignment. Then we utilize the inter-MCR alignment to establish the connection, and employ the intra-MCR alignment to better maintain the connection for inputs from non-overlapping modalities. To demonstrate the effectiveness of C-MCR, we connect CLIP and CLAP via texts to derive audio-visual representations, and integrate CLIP and ULIP via images for 3D-language representations. Remarkably, without using any paired data, C-MCR for audio-visual achieves state-of-the-art performance on audio-image retrieval, audio-visual source localization, and counterfactual audio-image recognition tasks. Furthermore, C-MCR for 3D-language also attains advanced zero-shot 3D point cloud classification accuracy on ModelNet40.Comment: NeurIPS 202

    The association of lipid metabolism with bone metabolism and the role of human traits: a Mendelian randomization study

    Get PDF
    BackgroundThe impact of lipid metabolism on bone metabolism remains controversial, and the extent to which human traits mediate the effects of lipid metabolism on bone metabolism remains unclear.ObjectiveThis study utilized mendelian randomization to investigate the effects of blood lipids on bone mineral density (BMD) at various skeletal sites and examined the mediating role of human traits in this process.MethodsWe leveraged genetic data from large-scale genome-wide association studies on blood lipids (n=1,320,016), forearm bone mineral density (FA-BMD) (n=10,805), lumbar spine bone mineral density (LS-BMD) (n=44,731), and femoral neck bone mineral density (FN-BMD) (n=49,988) to infer causal relationships between lipid and bone metabolism. The coefficient product method was employed to calculate the indirect effects of human traits and the proportion of mediating effects.ResultsThe results showed that a 1 standard deviation(SD) increase in HDL-C, LDL-C and TC was associated with a decrease in LS-BMD of 0.039 g/cm2, 0.045 g/cm2 and 0.054 g/cm2, respectively. The proportion of mediating effects of systolic blood pressure (SBP) on HDL-C to LS-BMD was 3.17%, but suppression effects occurred in the causal relationship of LDL-C and TC to LS-BMD. Additionally, the proportion of mediating effects of hand grip strength (HGS) on the TC to LS-BMD pathway were 6.90% and 4.60% for the left and right hands, respectively.ConclusionIn conclusion, a negative causal relationship was established between lipid metabolism and bone metabolism. Our results indicated that SBP and HGS served as mediators for the effects of lipid metabolism on bone metabolism

    The Atypical Effective Connectivity of Right Temporoparietal Junction in Autism Spectrum Disorder: A Multi-Site Study

    Get PDF
    Social function impairment is the core deficit of autism spectrum disorder (ASD). Although many studies have investigated ASD through a variety of neuroimaging tools, its brain mechanism of social function remains unclear due to its complex and heterogeneous symptoms. The present study aimed to use resting-state functional magnetic imaging data to explore effective connectivity between the right temporoparietal junction (RTPJ), one of the key brain regions associated with social impairment of individuals with ASD, and the whole brain to further deepen our understanding of the neuropathological mechanism of ASD. This study involved 1,454 participants from 23 sites from the Autism Brain Imaging Data Exchange (ABIDE) public dataset, which included 618 individuals with ASD and 836 with typical development (TD). First, a voxel-wise Granger causality analysis (GCA) was conducted with the RTPJ selected as the region of interest (ROI) to investigate the differences in effective connectivity between the ASD and TD groups in every site. Next, to obtain further accurate and representative results, an image-based meta-analysis was implemented to further analyze the GCA results of each site. Our results demonstrated abnormal causal connectivity between the RTPJ and the widely distributed brain regions and that the connectivity has been associated with social impairment in individuals with ASD. The current study could help to further elucidate the pathological mechanisms of ASD and provides a new perspective for future research

    Accessibility to Jobs Outside Employment Sub-Centers Has a Larger Impact on VMT Reduction than Accessibility to Jobs Inside Employment Sub-Centers [Policy Brief]

    Get PDF
    This policy brief summarizes findings from a study to help close the gap by examining how access to jobs in employment sub-centers influences household VMT, using the five-county Los Angeles Combined Statistical Area as an example
    corecore