
ORIGINAL RESEARCH
published: 18 July 2022

doi: 10.3389/fnins.2022.927556

Frontiers in Neuroscience | www.frontiersin.org 1 July 2022 | Volume 16 | Article 927556

Edited by:

Feng Liu,

Tianjin Medical University General

Hospital, China

Reviewed by:

Alexandre Rosa Franco,

Nathan Kline Institute for Psychiatric

Research, United States

Xiaozheng Liu,

Wenzhou Medical University, China

Yu Zheng,

Nanjing Medical University, China

Xia-An Bi,

Hunan Normal University, China

Yuzheng Hu,

Zhejiang University, China

*Correspondence:

Huayun Li

lihuayun99@163.com

Xize Jia

jiaxize@foxmail.com

Qingguo Ding

qingguo_d2015@163.com

†These authors have contributed

equally to this work and share first

authorship

Specialty section:

This article was submitted to

Brain Imaging Methods,

a section of the journal

Frontiers in Neuroscience

Received: 24 April 2022

Accepted: 21 June 2022

Published: 18 July 2022

Citation:

Hao Z, Shi Y, Huang L, Sun J, Li M,

Gao Y, Li J, Wang Q, Zhan L, Ding Q,

Jia X and Li H (2022) The Atypical

Effective Connectivity of Right

Temporoparietal Junction in Autism

Spectrum Disorder: A Multi-Site

Study. Front. Neurosci. 16:927556.

doi: 10.3389/fnins.2022.927556

The Atypical Effective Connectivity of
Right Temporoparietal Junction in
Autism Spectrum Disorder: A
Multi-Site Study
Zeqi Hao 1,2†, Yuyu Shi 1,2†, Lina Huang 3†, Jiawei Sun 4, Mengting Li 1,2, Yanyan Gao 1,2,

Jing Li 1,2, Qianqian Wang 1,2, Linlin Zhan 5, Qingguo Ding 3*, Xize Jia 1,2* and Huayun Li 1,2*

1 School of Teacher Education, Zhejiang Normal University, Jinhua, China, 2 Key Laboratory of Intelligent Education

Technology and Application, Zhejiang Normal University, Jinhua, China, 3Department of Radiology, Changshu No. 2 People’s

Hospital, The Affiliated Changshu Hospital of Xuzhou Medical University, Changshu, China, 4 School of Information and

Electronics Technology, Jiamusi University, Jiamusi, China, 5 School of Western Languages, Heilongjiang University, Harbin,

China

Social function impairment is the core deficit of autism spectrum disorder (ASD). Although

many studies have investigated ASD through a variety of neuroimaging tools, its brain

mechanism of social function remains unclear due to its complex and heterogeneous

symptoms. The present study aimed to use resting-state functional magnetic imaging

data to explore effective connectivity between the right temporoparietal junction (RTPJ),

one of the key brain regions associated with social impairment of individuals with ASD,

and the whole brain to further deepen our understanding of the neuropathological

mechanism of ASD. This study involved 1,454 participants from 23 sites from the Autism

Brain Imaging Data Exchange (ABIDE) public dataset, which included 618 individuals

with ASD and 836 with typical development (TD). First, a voxel-wise Granger causality

analysis (GCA) was conducted with the RTPJ selected as the region of interest (ROI) to

investigate the differences in effective connectivity between the ASD and TD groups in

every site. Next, to obtain further accurate and representative results, an image-based

meta-analysis was implemented to further analyze the GCA results of each site. Our

results demonstrated abnormal causal connectivity between the RTPJ and the widely

distributed brain regions and that the connectivity has been associated with social

impairment in individuals with ASD. The current study could help to further elucidate the

pathological mechanisms of ASD and provides a new perspective for future research.

Keywords: autism spectrum disorder, temporoparietal junction, Granger causality analysis, multi-site, image-

based meta-analysis

INTRODUCTION

Autism spectrum disorder (ASD) is a neurodevelopmental disorder with impaired social function
as its core deficit (Lord et al., 2018), and the global prevalence is estimated to be 1–1.5% (Baxter
et al., 2015). Social impairment can affect access to higher education, employment, independent
living, and intimate relationships (Poon and Sidhu, 2017) and lead to a lower overall quality of life
for individuals with ASD (Howlin and Magiati, 2017). However, the limited understanding of the

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2022.927556
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2022.927556&domain=pdf&date_stamp=2022-07-18
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles
https://creativecommons.org/licenses/by/4.0/
mailto:lihuayun99@163.com
mailto:jiaxize@foxmail.com
mailto:qingguo_d2015@163.com
https://doi.org/10.3389/fnins.2022.927556
https://www.frontiersin.org/articles/10.3389/fnins.2022.927556/full


Hao et al. Atypical Effective Connectivity of ASD

pathological mechanism leads to the limited therapeutic effect
of ASD (Sharma et al., 2018; Xu et al., 2019; Wood et al., 2020;
Hickman et al., 2022; Lord et al., 2022). Researchers have utilized
advanced brain imaging techniques and analytic methods to
elucidate the biological underpinnings of ASD to facilitate early
screening and treatment options for individuals with ASD to
improve their quality of life (Wang et al., 2022; Zhao et al., 2022).

Previous studies demonstrated that the right temporoparietal
junction (RTPJ) not only played an important role in the “social
brain” of ASD (Pelphrey et al., 2011; Müeller and Fishman, 2018)
but is also involved in higher-order social cognition such as
processing the intentions and opinions of others (Wang et al.,
2020b), reciprocating face-to-face social interactions (Tang et al.,
2016), processing social faces (Kret et al., 2011), and reciprocating
interpersonal empathy (Patel et al., 2019; Canigueral et al., 2021).
However, the RTPJ cannot perform these social functions alone
and needs to cooperate with other brain regions. Examination of
the correlation of intrinsic brain activity between the RTPJ and
other brain regions can help us to further explore the role played
by the RTPJ in the pathophysiological mechanisms of ASD.
The resting-state functional connectivity (rs-FC), a commonly
used analytic method to provide information on intrinsic
synchronized activity in the brain (Fishman et al., 2018; Gotts
et al., 2019), demonstrated that the RTPJ had hyperconnectivity
with the fusiform gyrus, which is associated with social difficulty
in ASD (Chien et al., 2015). Hoffmann et al. conducted a study on
self-other distinction and found that the functional connectivity
between the RTPJ and the prefrontal cortex (PFC) was reduced in
individuals with ASD (Hoffmann et al., 2016). Although previous
studies demonstrated that social impairment in individuals with
ASD was associated with altered FC in the RTPJ, it is difficult
to characterize causal influences between regions and within
circuits using only this method (Wicker et al., 2008; Wang et al.,
2022). In contrast, effective connectivity can reflect the influence
exerted by one neuron system on another in a particular direction
and provide information closely related to the causal processes
that operate in brain function (Friston, 1994; Wei et al., 2020).
Specifically, by comparing the effective connectivity differences
between the ASD group and the typical development (TD) group,
it could provide information about how impaired brain regions
affected other brain regions in ASD (Rolls et al., 2020). This
could help researchers better understand the pathophysiological
mechanisms of ASD.

Granger causality analysis (GCA) is an exploratory data-
driven approach (Wang et al., 2022), which can be used
to measure the direction of information flow between brain
regions and estimate resting-state directional brain networks
(Goebel et al., 2003; Roebroeck et al., 2005; Uddin et al.,
2011). Previous studies demonstrated the important role of
GCA in exploring the underlying pathological mechanisms
of social impairment in individuals with ASD (Chen et al.,
2016; Li et al., 2021), which were used to investigate abnormal
excitatory or inhibitory directional connectivity between brain
regions in individuals with ASD and could identify their
underlying social impairment (Liao et al., 2011; Uddin et al.,
2011). However, previous GCA studies focused on the study
of neural circuits during specific social tasks in ASD, and the

mechanisms of spontaneous neural activity interactions between
brain regions in the absence of an explicit task need to be further
explored (Li et al., 2021). Furthermore, the blood oxygen level-
dependent (BOLD) signal measured by resting-state functional
MRI (rs-fMRI) is convoluted by underlying neural activity
and hemodynamic response function (HRF). Considering that
HRF varies in different brain regions due to many neural and
non-neural factors (Handwerker et al., 2012; Badillo et al.,
2013), the assumption that HRF is homogeneous in the brain
may subject the interpretation of results to HRF confounding
effects (Rangaprakash et al., 2018). Therefore, we used a blind
deconvolution technique to extract the region-specific HRF and
deconvolve the BOLD signal into a neural signal (Wu et al., 2013,
2021), which could minimize the confound of non-neural HRF
inherent in the BOLD signal (Wu and Marinazzo, 2016).

Previous rs-fMRI studies on ASD commonly used a small
sample of participants from a single site, which led to limited
statistical power (Van Horn and Toga, 2009). Nowadays,
multisite data are used to improve the statistical power by
increasing the total sample size of the study (Button et al.,
2013; Yu et al., 2018). Besides, multisite data could enroll more
representative samples which benefit from generalizing the study
results to a diverse population (McGonigle, 2012; Dansereau
et al., 2017). Therefore, we conducted our research based on the
Autism Brain Imaging Data Exchange (ABIDE), a large sample
of a multisite public dataset (http://fcon_1000.projects.nitrc.org/
indi/abide/), to improve the reproducibility and statistical power
of the results. It includes two large-scale collections: ABIDE
I and ABIDE II, each of which is composed of independent
functional and structural brain imaging data collected frommore
than 24 different laboratories worldwide (Di Martino et al.,
2014, 2017). Although the large sample of multisite dataset
addresses the impact of a small sample on research, there are
significant challenges that remain in the analysis of multisite data,
since fMRI data from different sites may contain scanner and
site variability, which may lead to inconsistent results and low
reliability (Friedman et al., 2008; Abraham et al., 2017). To solve
this problem, we used anisotropic effect-size signed differential
mapping (AES-SDM) to conduct an image-based meta-analysis
using the uncorrected statistical parametric map (Radua et al.,
2012, 2014), which is a powerful method that can solve the
issues caused by heterogeneity among different sites and is useful
for distinguishing spurious results from replicable findings (Fox
et al., 2014; Müller et al., 2018).

To address the above questions, we first conducted
GCA using RTPJ as the region of interest to investigate
the differences in effective connectivity between individuals
with ASD and TD. Then, an image-based meta-analysis
was applied to identify the consistent brain regions that
showed a significant difference between the two groups.
We hypothesized that individuals with ASD had atypical
effective connectivity between the RTPJ and brain regions
related to a social function, such as the fusiform and PFC.
We hope that the present study could help us further explore
the brain mechanisms of social impairment in individuals
with ASD and would help to develop the treatment in
the future.
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METHODS

Participants
The experimental data of this study were obtained from the
ABIDE dataset (ABIDE I and ABIDE II), which included
multiple neuroimaging data sites. Before data collection, all
sites were required to confirm that their local institutional
review board (IRB) or ethics committee approved both the
initial collection and retrospective sharing of a fully anonymized
version of the datasets (Di Martino et al., 2014, 2017). A
total of 23 sites were included in this study. These sites were
further divided into 30 groups according to the number of
slices and time points. The participants were divided into
the ASD and TD groups, which contained 618 and 836
participants, respectively. The inclusion criteria included (1)
participants with corresponding T1 image; (2) participants
with lower head movement (translation or rotation <3mm or
3◦); (3) images with good normalization effect [we provided
the normalization pictures in the website (http://restfmri.
net/ABIDE-RTPJ-FC.zip)]; and (4) participants with right-
handedness. The demographic information is shown in Table 1,
and detailed information on the inclusion criteria is provided in
the Supplementary Table S1. The scan information, diagnostic
tools, and ethics statement of all the participants can be found
at http://fcon_1000.projects.nitrc.org/indi/abide/.

Resting-State fMRI Data Preprocessing
Resting-State fMRI Data Analysis Toolkit plus (RESTplus V1.24,
http://restfmri.net/forum/restplus; Jia et al., 2019), based on
Statistical Parametric Mapping (SPM12, http://www.fil.ion.ucl.
ac.uk/spm), was used to preprocess the data on MATLAB
2017b (https://www.mathworks.cn/products/matlab.html). The
first 10 time points were removed to promote equilibrium
magnetization and allow the participants to adapt to the MRI
environment. Subsequently, slice-timing was used to correct the
acquisition time of differences between slices, and realignment
was performed to adjust the time series of images to make
every image at the same position (Yan and Zang, 2010). Next,
the realigned images were spatially normalized to the Montreal
Neurological Institute (MNI) space using the new segment
method and resampled to 3 × 3 × 3 mm3 for the intersubject
comparison to be feasible. Then, we used a 6mm full-width
half-maximum (FWHM) isotropic Gaussian kernel to perform
spatial smoothing to reduce spatial noise (Wei et al., 2015; Shi
et al., 2019; Dong et al., 2020; de la Cruz et al., 2021). Moreover,
we regressed Friston 24 head motion parameters and signals
of white matter and cerebrospinal fluid as nuisance signals to
further reduce the effects of head motion (Friston et al., 1996)
and non-neuronal BOLD fluctuations (Fox et al., 2005). Finally,
the functional images were detrended to reduce systematic
increase or decrease in the signal with time caused by long-term
physiological shifts, movement-related noise remaining after
realignment, or instrumental instability (Turner, 1997; Lowe and
Russell, 1999). We did not perform band-pass filtering because
previous studies considered that themodel order in GCAwas low
(Hamilton et al., 2011; Liao et al., 2011; Wu et al., 2013).

Blind Deconvolution Procedure
To minimize confounding effects introduced by the
hemodynamic response function (HRF), we used Resting-State
Hemodynamic Response Function Retrieval and Deconvolution
(RS-HRF, https://www.nitrc.org/projects/rshrf) to extract the
region-specific HRF and deconvolve the observed BOLD signal
into the real neural signal (Wu et al., 2013, 2021).

Granger Causality Analysis
After preprocessing, we used a voxel-wise GCA with the RTPJ
as the region of interest to study the effective connectivity of
brain regions using RESTplus. The MNI coordinates of RTPJ
were centered at x = 54, y = −52, and z = 26, with a radius
of 10mm (Krall et al., 2015), and its time series was defined as
seed time series X, while time series Y represented the time series
of all the other voxels in the whole brain. In the GCA, if the
future value of X or Y generated from the joint prediction of
past values of the time series X and Y was better than that of
the single prediction of X or Y, it was considered that there was
a granger causality between X to Y or Y to X (Granger, 1969).
Fx→y represented the ability to send information from the seed
ROI to the whole brain and Fy→x represented the ability of the
seed ROI to receive information from the whole brain. Next, we
converted the coefficient-based F-to-Z score, namely, Zx→y and
Zy→x (Zang et al., 2012).

Statistical Analysis
For demographic and behavioral data, the statistical analyses
were performed by Statistical Product and Service Solutions
version (SPSS 20.0, IBM, Armonk, NY, USA). Continuous
variables were compared using two-sample t-tests, and
categorical variables were compared using chi-squared tests.
Group differences were considered significant if p-value is
< 0.05.

For the statistical analysis of the GCA, we used RESTplus to
conduct a two-sample t-test between the ASD and TD groups
with age, gender, and mean frame displacement (FD; Jenkinson
et al., 2002) as covariates. To make the subsequent image-
based meta-analysis to integrate all statistical information from
the whole brain and improve the statistical power (Salimi-
Khorshidi et al., 2009; Müller et al., 2018; Jia et al., 2021), we
did not conduct multiple comparison correction for the statistical
analysis results of GCA and shared the uncorrected statistical
parametric maps (http://restfmri.net/ABIDE-RTPJ-FC.zip).

Then, AES-SDM Software V5.15 (https://www.sdmproject.
com) was used to conduct a meta-analysis on the original
uncorrected statistical parametric maps of the GCA results
calculated from the ABIDE dataset (Radua et al., 2012,
2014). AES-SDM calculated the effect-size maps and effect-
size variance maps by integrating the statistical parametric
map and the differences in effect sizes between the groups.
In our study, we first set the gray matter correlation template
with the recommended full anisotropy = 1.0. Subsequently,
to better balance the sensitivity and specificity of AES-SDM
and to improve statistical stability, FWHM = 20mm and
20 randomizations were applied to preprocess the original
uncorrected t-maps of the GCA of all the included sites (Radua
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TABLE 1 | Demographic characteristics of ASD and TD.

Site_ID ASD (N = 618) TD (N = 836)

N Age (M ± SD) Gender (male/female) N Age (M ± SD) Gender (male/female) Age P-value Gender P-value

001_BNI 22 35.32 ± 15.43 22/0 21 36.95 ± 15.20 21/0 0.728 —

002_Caltech 4 25.00 ± 8.48 4/0 10 28.03 ± 12.23 6/4 0.662 0.134

003_EMC 13 8.37 ± 1.16 10/3 14 8.02 ± 0.80 11/3 0.363 0.918

004_ETH 6 21.07 ± 4.10 6/0 19 23.37 ± 4.78 19/0 0.300 —

005_GU 22 10.93 ± 1.56 20/2 31 10.59 ± 1.87 15/16 0.490 0.001b

006_IP 15 24.53 ± 11.42 7/8 17 17.10 ± 7.86 9/8 0.038a 0.723

007_IU 12 25.92 ± 11.83 9/3 15 23.80 ± 5.23 11/4 0.573 0.922

008_KKI_1 13 9.75 ± 1.57 9/4 28 10.34 ± 1.07 16/12 0.163 0.460

009_KKI_2 41 10.57 ± 1.46 30/11 108 10.31 ± 1.19 66/42 0.254 0.170

010_Leuven 24 18.05 ± 5.20 22/2 27 18.87 ± 5.21 23/4 0.581 0.473

011_MaxMun_1 11 36.09 ± 11.75 8/3 12 33.25 ± 8.97 8/4 0.519 0.752

012_MaxMun_2 2 15.00 ± 9.90 2/0 14 26.43 ± 3.74 14/0 0.346 —

013_MaxMun_3 8 19.25 ± 13.30 8/0 2 9.00 ± 2.83 2/0 0.329 —

014_NYU 67 14.37 ± 7.92 55/12 98 14.97 ± 6.41 78/20 0.594 0.690

015_OHSU_1 13 11.66 ± 2.25 13/0 13 10.21 ± 1.09 13/0 0.051 —

016_OHSU_2 31 11.71 ± 2.30 25/6 51 10.39 ± 1.70 26/25 0.004a 0.007b

017_Olin1 14 17.21 ± 3.77 12/2 11 17.55 ± 3.96 9/2 0.833 0.792

018_Olin2 10 21.50 ± 3.95 10/0 29 24.34 ± 3.69 16/13 0.046a 0.010b

019_Pitt 22 18.94 ± 7.17 19/3 23 19.45 ± 6.60 20/3 0.805 0.953

020_SBL 9 35.00 ± 7.43 9/0 10 35.50 ± 4.86 10/0 0.863 —

021_SDSU 37 13.77 ± 2.96 31/6 41 13.81 ± 2.35 34/7 0.948 0.919

022_Stanford1 17 9.97 ± 1.62 14/3 16 10.11 ± 1.66 12/4 0.806 0.606

023_Stanford2 17 11.03 ± 1.23 16/1 18 10.99 ± 1.36 16/2 0.935 0.581

024_Trinity1 20 17.05 ± 2.68 20/0 23 17.48 ± 3.66 23/0 0.663 —

025_Trinity2 13 14.29 ± 3.60 13/0 18 16.28 ± 2.79 18/0 0.093 —

026_UMIA 10 10.29 ± 1.85 8/2 8 9.56 ± 1.82 6/2 0.415 0.800

027_UCD 16 14.81 ± 1.92 12/4 13 14.93 ± 1.71 10/3 0.866 0.904

028_UCLA 49 12.88 ± 2.40 45/4 47 12.15 ± 2.47 37/10 0.143 0.069

029_UM 37 13.56 ± 2.43 30/7 59 15.09 ± 3.61 44/15 0.026a 0.461

030_USM 43 22.90 ± 8.20 43/0 40 22.68 ± 6.63 38/2 0.892 0.138

N, number; M, mean; SD, standard deviation.
aThe P-value was calculated by the two sample t-test.
bThe P-value was calculated by two-tailed Pearson chi-square t-test.

There was no Gender P in 001_BNI, 004_ETH, 011_MaxMun_1, 012_MaxMun_2, 015_OHSU_1, 020_SBL, 024_Trinity1 and 025_Trinity2 due to no female participants in these sites.

et al., 2012, 2014). Next, we performed a mean analysis, i.e.,
the main meta-analysis method. The main threshold of a p-
value < 0.0005 (Chan and Han, 2020) and an additional z-based
threshold of z > 1 were adopted to reduce the possibility of false-
positive results. Then, the recommended extent threshold of 10
voxels was applied to exclude smaller clusters (Radua et al., 2012).
Finally, we created a mask to extract the values of the areas with
significant differences to further present the results.

RESULTS

Demographic and Clinical Information
Initially, a total of 2,168 participants from ABIDE I and ABIDE
II were included in our study. Among these, 714 participants
were excluded for the following reasons: 30 participants were
deleted for missing functional or structural images, 213 for poor

normalization effect, 228 for excessive head motion (translation
or rotation more than 3mm or 3◦), 188 not being right-handed,
and four sites (55 participants) were excluded due to no TD
participants. Finally, 618 individuals with ASD and 836 TD
participants were included. Demographic information is shown
in Table 1.

GCA Meta-Analysis Results
Seed to the Whole Brain GCA in Meta-Analysis
The results of the meta-analysis of the GCA showed that,
compared with the TD group, the GCA values of the ASD group
from the RTPJ to the right fusiform, the left inferior temporal
gyrus (ITG), the right middle temporal gyrus (MTG), and the left
precuneus were higher. However, the left insula, the left anterior
cingulate cortex (ACC), the left middle frontal gyrus (MFG), and
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TABLE 2 | The GCA results from seed to the whole brain.

Fx→y Anatomical label BA Number of voxels Peak MNI coordinates [x, y, z] Peak SDM-z value

ASD > HC

Fusiform_R 37 21 32, −42, −18 3.71

Temporal_Inf_L 37 32 −60, −54, −6 3.58

Temporal_Mid_R 37 59 62, −48, −6 3.34

Precuneus_L NA 18 2, −66, 30 3.02

ASD < HC

Insula_L 47 98 −40, 18, −6 −3.90

Cingulum_Ant_L 24 12 0, 38, 16 −3.24

Frontal_Mid_L 46 10 −26, 40, 24 −3.21

Frontal_Sup_Orb_L 11 12 −30, 58, −2 −3.16

A cluster located in the cerebellum is not reported due to the incomplete partial site scan.

Fusiform_R, right fusiform; Temporal_Inf_L, left inferior temporal gyrus; Temporal_Mid_R, right middle temporal gyrus; Precuneus_L, left precuneus; Insula_L, left insula; Cingulum_Ant_L,

left anterior cingulate cortex; Frontal_Mid_L, left middle frontal gyrus; Frontal_Sup_Orb_L, left superior frontal gyrus, orbital part; BA, Brodmann area; MNI, Montreal Neurological Institute;

ASD, autism spectrum disorder; HC, healthy control; NA, not available.

FIGURE 1 | (A) Results of GCA from the RTPJ to the whole brain. (B) Results of GCA from the whole brain to the RTPJ. The red and blue lines represent increased or

decreased effective connectivity between brain regions, respectively. The arrows demonstrated the direction of information transferred between brain regions. RTPJ,

right temporoparietal junction; L.Fusiform, left fusiform; R.Fusiform, right fusiform; L.ITG, left inferior temporal gyrus; R.MTG, right middle temporal gyrus; L.Precuneus,

left precuneus; L.Precentral, left precentral gyrus; R.Precentral, right precentral gyrus; L.Insula, left insula; L.ACC, left anterior cingulate cortex; L.MFG, left middle

frontal gyrus; R.MFG, right middle frontal gyrus; L.SFG.Orb_L, left superior frontal gyrus, orbital part; R.SFG, right superior frontal gyrus; R.Thalamus, right thalamus;

R.Lingual, right lingual; L.IOG, left inferior occipital gyrus.

the left superior frontal gyrus (SFG) were lower than those of the
TD group (p < 0.0005, Table 2, Figure 1A).

The Whole Brain to Seed GCA in Meta-Analysis
Compared with the TD group, the results of the meta-analysis of
the GCA showed that the GCA values of the ASD group from
the right precentral gyrus, the right MFG, the right thalamus,
and the right SFG to the RTPJ were significantly higher than
those of the TD group. However, the GCA values from the
left precentral gyrus, the left fusiform, the right lingual gyrus,
and the left inferior occipital gyrus (IOG) to the RTPJ were
significantly lower than those of the TD group (p < 0.0005,
Table 3, Figure 1B).

DISCUSSION

In the current study, we conducted an image-basedmate-analysis
to explore the GCA alterations of ASD with the RTPJ as the ROI.
Our results demonstrated that the atypical effective connectivity
of the RTPJ in individuals with ASD was widely distributed,
mainly in the fusiform, the insula, and the PFC. These brain
regions play essential roles in face processing, self-awareness, and
understanding others and are associated with social impairment
in individuals with ASD. This suggested that the RTPJ is a multi-
functional brain region that is extensively involved in multiple
functions related to society. From the perspective of the direction
of interaction between RTPJ and the above brain regions, we
could deepen our understanding of the brain mechanisms of
social impairment in ASD.
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TABLE 3 | The GCA results from the whole brain to seed.

Fy→x Anatomical label BA Number of voxels Peak MNI coordinates [x, y, z] Peak SDM-z value

ASD > HC

Precentral_R 6 16 54, 0, 30 4.00

Frontal_Mid_R 46 15 22, 44, 30 3.39

Thalamus_R NA 12 12, −6, 12 3.05

Frontal_Sup_R 9 11 18, 50, 38 3.03

ASD < HC

Precentral_L 4 12 −42, −18, 60 −3.54

Fusiform_L 37 17 −30, −56, −6 −2.85

Lingual_R 18 14 12, −54, 2 −2.75

Occipital_Inf_L 18 13 −18, −92, −6 −2.71

A cluster located in the cerebellum is not reported due to an incomplete partial site scan.

Precentral_R, right precentral gyrus; Frontal_Mid_R, right middle frontal gyrus; Thalamus_R, right thalamus; Frontal_Sup_R, right superior frontal gyrus; Precentral_L, left precentral

gyrus; Fusiform_L, left fusiform; Lingual_R, right lingual; Occipital_Inf_L, left inferior occipital gyrus; BA, Brodmann area; MNI, Montreal Neurological Institute; NA, not available.

The fusiform, lingual gyrus, and IOG are all important
components of the ventral occipitotemporal cortex (VOTC) and
are jointly involved in the processing of visual stimuli, especially
in relation to face recognition of ASD (Humphreys et al., 2008;
Price and Devlin, 2011; Domes et al., 2013;Mamashli et al., 2021).
Face recognition is a necessary social skill in social activities such
as peer interaction, while its deficit is considered a core deficit
in individuals with ASD (Griffin et al., 2021). The fusiform is
most closely related to face recognition, and it is also one of
the brain regions of the “social brain” (Frith and Frith, 2010).
Previous studies showed increased functional connectivity of the
RTPJ with the fusiform and lingual gyrus in ASD (Chien et al.,
2015). Besides, the MTG is also associated with face processing
disorder in ASD (van Veluw and Chance, 2014; O’Hearn et al.,
2020; Liu et al., 2021). Our results supported these results and
further revealed the direction of the connectivity. Specifically,
the ASD group showed higher effective connectivity from the
RTPJ to the fusiform and MTG, but the effective connectivity
from the fusiform, the lingual gyrus, and the IOG to the RTPJ
was lower than TD. Notably, the neural circuit between the RTPJ
and the fusiform might reflect that impaired fusiform function
could affect its ability to transmit face processing information
to the RTPJ, a brain region responsible for integrating external
input stimuli, and in turn, the RTPJ would like to send more
information to the fusiform. This might suggest interference in
the processing of important inputs related to social cognition and
is associated with social impairment with ASD.

Self-awareness is a pivotal component of conscious experience
and conscious self-regulation of behavior (Lou, 2012). Some
studies demonstrated that individuals with ASD had impaired
self-awareness (Verhoeven et al., 2012), performed stronger
self-experience, and had clearer self-boundaries (Crespi and
Dinsdale, 2019;Mul et al., 2019). Self-awareness includes physical
self-awareness and mental self-awareness. The insula was an
important brain region that constituted the core of the physical
self-awareness (Wiebking et al., 2014, 2015) and was responsible
for primary (objective) interoceptive signals re-represented to
higher (subjective) sensory states through the integration of

information with other brain regions (Craig, 2009; Wang et al.,
2020a). Previous studies demonstrated that the TPJ is connected
to the anterior insula via the middle longitudinal fasciculus and
extreme capsule (Saur et al., 2008). TPJ collaborated with the
insula to integrate the multiple sensory and sensorimotor signals,
thus constituting a coherent physical self-awareness (Park and
Blanke, 2019). Our results suggested that ASD had lower effective
connectivity from the left insula to the RTPJ, which is consistent
with previous research. It was found that disrupted connectivity
between the TPJ and the insula might cause individuals to lose
awareness of the contralesional half of the body (Committeri
et al., 2006). We further provided directional information for this
disruption of connectivity, and this “personal neglect” might be
associated with insufficient information received by the TPJ from
the insula. The insula is not only involved in the processing of the
physical self-awareness but also in the processing of the mental
self-awareness (Qin et al., 2020) together with brain regions of
the default mode network, such as the precuneus (van Veluw and
Chance, 2014) and the ACC (Kana et al., 2017). Our study found
that effective connectivity from the RTPJ to the left precuneus
was increased and effective connectivity from the RTPJ to the
left insula and the left ACC was decreased in the ASD group.
Although the insula, the ACC, and the precuneus were all related
to impaired self-processing in ASD, their underlyingmechanisms
are different and future studies should further investigate the
differences in the interaction between brain regions.

Furthermore, previous studies found that the ITG (Apps et al.,
2012) and the precentral gyrus (Olivé et al., 2015; Rabellino
et al., 2018) were also involved in self-awareness processing.
However, few have investigated functional connectivity or
effective connectivity between these brain regions and RTPJ.
Our results revealed the effective connectivity from the RTPJ
to the left ITG was higher in the ASD group. The effective
connectivity from the right precentral gyrus to RTPJ was higher
but was lower from the left precentral gyrus to the RTPJ.
This might be affected by the abnormality of the sensorimotor
cortex in ASD and is related to impaired self-awareness and
social functions.
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The PFC plays an important role in the social understanding
of others, where the connectivity with the TPJ is primarily related
to understanding the mental state of others (Andrews-Hanna
et al., 2010; Libero et al., 2014). Previous studies showed that
functional connectivity between the PFC and the TPJ decreased
when individuals with ASD performed the social task (Burnett
and Blakemore, 2009; Baumgartner et al., 2012). Our results
demonstrated that the effective connectivity of the ASD group
was lower than that of the TD group from the RTPJ to the left
MFG and the left SFG but higher than that from the right MFG
and the right SFG to the RTPJ. This might be related to the
different functions between the TPJ and PFC in understanding
the mental states of others. Previous research found that the PFC
is associated with internal focusing processes that understand
the content of others’ thoughts, whereas the TPJ is associated
with external focusing processes (Lieberman, 2007). Therefore,
the atypical neural circuit between the RTPJ and the PFC suggests
that individuals with ASD have difficulty integrating internal
states and external features of others and are related to ASD’s
impairment in distinguishing between self and others. In addition
to PFC, we also found that the effective connectivity from the
right thalamus to the RTPJ was higher in the ASD group. This is
consistent with previous studies, which suggested that enhanced
functional connectivity between the TPJ and the thalamus in
individuals with ASD reflects increased stress in social cognitive
processes and affects the social perceptual performance of the TPJ
(Kana et al., 2014; Woodward et al., 2017).

Previous studies suggested that GCA may be affected by
HRF confounding effects due to variability in timing, amplitude,
shape, and latency of HRF in different brain regions and
participants (Miezin et al., 2000; Handwerker et al., 2012; Badillo
et al., 2013). To overcome this problem, we used a blind
deconvolution technique developed by Wu et al. to eliminate
the effect of HRF and deconvolute BOLD signals into neural
signals (Wu et al., 2013, 2021). The effectiveness of this technique
has been recognized in studies of loss of consciousness induced
by anesthesia and pathology (Wu et al., 2019), chronic pain
without explicit onset (Wu and Marinazzo, 2015), and heart rate
variability (Wu and Marinazzo, 2016).

There are some limitations to our study. First, we only
chose the RTPJ as the region of interest since the TPJ on the
right hemisphere was related to attention, empathy, and other
social functions. However, this may ignore some important
information about the TPJ on the left side. Second, cross-
sectional group data from the public dataset of the present study
did not allow us to assess the dynamic change of the GCA;
therefore, future longitudinal studies are needed. Third, the lack

of behavioral measures in the current study led to a limited
interpretation of the fMRI results, which should be combined
with behavioral measures in future studies to better interpret the
fMRI results. Finally, a previous study performed simulations
on a task-based date to indicate the monotonic relationship
between GCA at the neural level and GCA in the simulated blood
oxygenation level-dependent (BOLD) signals (Wen et al., 2013).
However, future studies are needed to demonstrate a similar
monotonic relationship in resting-state data.

CONCLUSION

In conclusion, the current study found that individuals with ASD
showed abnormal effective connectivity between the RTPJ and
the brain regions related to the impairment of social and other
domains. It helps to further elucidate the pathophysiological
mechanisms of ASD and improve the early clinical screening of
ASD. At the same time, it also contributes to a more directional
treatment of ASD in future and promotes the development of
ASD treatment.
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