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We study the strong consistency of estimator of fixed design regression model under negatively dependent sequences by using the
classical Rosenthal-type inequality and the truncated method. As an application, the strong consistency for the nearest neighbor
estimator is obtained.

1. Introduction

Let {𝑋
𝑛
, 𝑛 ≥ 1} be a sequence of random variables defined on

a fixed probability space (Ω,F, 𝑃). It is well known that the
Rosenthal-type inequality for the partial sum∑

𝑛

𝑖=1
𝑋
𝑖
plays an

important role in probability limit theory and mathematical
statistics. The main purpose of the paper is to investigate the
strong consistency of the estimator of fixed design regression
model under negatively dependent sequences, by using the
Rosenthal-type inequality.

Consider the following fixed design regression model:

𝑌
𝑛𝑖
= 𝑔 (𝑥

𝑛𝑖
) + 𝜀
𝑛𝑖
, 𝑖 = 1, 2, . . . , 𝑛, 𝑛 ≥ 1, (1)

where 𝑥
𝑛𝑖
are known fixed design points from 𝐴, where 𝐴 ⊂

R𝑝 is a given compact set for some 𝑝 ≥ 1, 𝑔(⋅) is an unknown
regression function defined on 𝐴, and 𝜀

𝑛𝑖
are random errors.

Assume that, for each 𝑛 ≥ 1, (𝜀
𝑛1
, 𝜀
𝑛2
, . . . , 𝜀

𝑛𝑛
) have the same

distribution as (𝜀
1
, 𝜀
2
, . . . , 𝜀

𝑛
). As an estimator of 𝑔(⋅), the

following weighted regression estimator will be considered:

𝑔
𝑛
(𝑥) =

𝑛

∑
𝑖=1

𝑊
𝑛𝑖
(𝑥) 𝑌
𝑛𝑖
, 𝑥 ∈ 𝐴 ⊂ R

𝑝

, (2)

where 𝑊
𝑛𝑖
(𝑥) = 𝑊

𝑛𝑖
(𝑥; 𝑥
𝑛1
, 𝑥
𝑛2
, . . . , 𝑥

𝑛𝑛
), 𝑖 = 1, 2, . . . , 𝑛, are

the weight function.
The above estimator was first proposed by Georgiev

[1] and subsequently has been studied by many authors.
For instance, when 𝜀

𝑛𝑖
are assumed to be independent,

consistency and asymptotic normality have been studied by
Georgiev and Greblicki [2], Georgiev [3], and Müller [4]
among others. Results for the case when 𝜀

𝑛𝑖
are dependent

have also been studied by various authors in recent years. Fan
[5] extended the work of Georgiev [3] and Müller [4] in the
estimation of the regression model to the case which form
an 𝐿
𝑞
-mixingale sequence for some 1 ≤ 𝑞 ≤ 2. Roussas [6]

discussed strong consistency and quadraticmean consistency
for 𝑔
𝑛
(𝑥) under mixing conditions. Roussas et al. [7] estab-

lished asymptotic normality of𝑔
𝑛
(𝑥) assuming that the errors

are from a strictly stationary stochastic process and satisfying
the strong mixing condition. Tran et al. [8] discussed again
asymptotic normality of 𝑔

𝑛
(𝑥) assuming that the errors form

a linear time series, more precisely, a weakly stationary linear
process based on a martingale difference sequence. Hu et
al. [9] studied the asymptotic normality for double array
sum of linear time series. Hu et al. [10] gave the mean
consistency, complete consistency, and asymptotic normality
of regression models with linear process errors. Liang and
Jing [11] presented some asymptotic properties for estimates
of nonparametric regression models based on negatively
associated sequences; Yang et al. [12] generalized the results
of Liang and Jing [11] for negatively associated sequences to
the case of negatively orthant dependent sequences. Shen [13]
presented the Bernstein-type inequality for widely dependent
random variables and gave its application to nonparametric
regression models, and so forth. The main purpose of this
section is to investigate the strong consistency of estimator
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of the fixed design regression model based on negatively
dependent random variables.

The concept of negatively dependent random variables
was introduced by Lehmann [14] as follows.

A finite collection of random variables 𝑋
1
, 𝑋
2
, . . . , 𝑋

𝑛

is said to be negatively dependent (or negatively orthant
dependent, ND in short) if

𝑃 (𝑋
1
> 𝑥
1
, 𝑋
2
> 𝑥
2
, . . . , 𝑋

𝑛
> 𝑥
𝑛
) ≤

𝑛

∏
𝑖=1

𝑃 (𝑋
𝑖
> 𝑥
𝑖
) ,

𝑃 (𝑋
1
≤ 𝑥
1
, 𝑋
2
≤ 𝑥
2
, . . . , 𝑋

𝑛
≤ 𝑥
𝑛
) ≤

𝑛

∏
𝑖=1

𝑃 (𝑋
𝑖
≤ 𝑥
𝑖
)

(3)

hold for all 𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
∈ R. An infinite sequence {𝑋

𝑛
, 𝑛 ≥

1} is said to be ND if every finite subcollection is ND.
Obviously, independent random variables are ND. Joag-

Dev and Proschan [15] pointed out that negatively associated
(NA, in short) random variables are ND.They also presented
an example in which 𝑋 = (𝑋

1
, 𝑋
2
, 𝑋
3
, 𝑋
4
) possesses ND but

does not possess NA. The another example which is ND but
is not NA was provided by Wu [16] as follows.

Example 1. Let 𝑋
𝑖
be a binary random variable such that

𝑃(𝑋
𝑖
= 1) = 𝑃(𝑋

𝑖
= 0) = 0.5 for 𝑖 = 1, 2, 3. Let

(𝑋
1
, 𝑋
2
, 𝑋
3
) take the values (0, 0, 1), (0, 1, 0), (1, 0, 0), and

(1, 1, 1), each with probability 1/4. It can be verified that all
the ND conditions hold. However,

𝑃 (𝑋
1
+ 𝑋3 ≤ 1,𝑋

2
≤ 0)

=
4

8
≰ 𝑃 (𝑋

1
+ 𝑋3 ≤ 1) 𝑃 (𝑋

2
≤ 0) =

3

8
.

(4)

Hence,𝑋
1
, 𝑋
2
, and𝑋

3
are not NA.

So we can see that ND is weaker than NA. A num-
ber of well-known multivariate distributions have the ND
properties, such as multinomial, convolution of unlike multi-
nomials, multivariate hypergeometric, dirichlet, dirichlet
compound multinomial, and multinomials having certain
covariance matrices. Because of the wide applications of ND
random variables, the limiting behaviors of ND random
variables have received more and more attention recently. A
number of useful results for ND random variables have been
established by many authors. We refer to Volodin [17] for
the Kolmogorov exponential inequality, Asadian et al. [18]
for Rosenthal’s type inequality, Kim [19] for Hájek-Rényi type
inequality, Amini et al. [20, 21], Ko and Kim [22], Klesov et
al. [23], and Wang et al. [24] for almost sure convergence,
Amini and Bozorgnia [25], Kuczmaszewska [26], Taylor et
al. [27], Zarei and Jabbari [28], Wu [16, 29], Sung [30], and
Wang et al. [31] for complete convergence, Wang et al. [32]
for exponential inequalities and inverse moment, Shen [33]
for strong limit theorems for arrays of rowwise ND random
variables, Shen [34] for strong convergence rate for weighted
sums of arrays of rowwise ND random variables, and so on.
When these are compared with the corresponding results of
independent random variable sequences, there still remains
much to be desired.

This work is organized as follows: some preliminary
lemmas are presented in Section 2, and the main results and
their proofs are provided in Section 3.

Throughout the paper, 𝐶 denotes a positive constant not
depending on 𝑛, which may be different in various places.
𝑎
𝑛
= 𝑂(𝑏

𝑛
) represents 𝑎

𝑛
≤ 𝐶𝑏
𝑛
for all 𝑛 ≥ 1. Let [𝑥] denote

the integer part of 𝑥, and let 𝐼(𝐴) be the indicator function of
the set 𝐴. Denote 𝑥+ = 𝑥𝐼(𝑥 ≥ 0) and 𝑥− = −𝑥𝐼(𝑥 < 0).

2. Preliminaries

In this section, wewill present some important lemmaswhich
will be used to prove the main results of the paper.

Lemma 2 (cf. Bozorgnia et al. [35]). Let the random variables
𝑋
1
, 𝑋
2
, . . . , 𝑋

𝑛
be ND, and let 𝑓

1
, 𝑓
2
, . . . , 𝑓

𝑛
be all nondecreas-

ing (or all nonincreasing) functions. Then random variables
𝑓
1
(𝑋
1
), 𝑓
2
(𝑋
2
), . . . , 𝑓

𝑛
(𝑋
𝑛
) are ND.

Lemma 3 (cf. Asadian et al. [18]). Let 𝑝 ≥ 2, and let {𝑋
𝑛
, 𝑛 ≥

1} be a sequence of ND random variables with 𝐸𝑋
𝑛
= 0 and

𝐸|𝑋
𝑛
|
𝑝

< ∞ for every 𝑛 ≥ 1. Then there exists a positive
constant 𝐶 depending only on 𝑝 such that for every 𝑛 ≥ 1,

𝐸

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑛

∑
𝑖=1

𝑋
𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑝

≤ 𝐶
{

{

{

𝑛

∑
𝑖=1

𝐸
󵄨󵄨󵄨󵄨𝑋𝑖
󵄨󵄨󵄨󵄨
𝑝

+ (

𝑛

∑
𝑖=1

𝐸𝑋
2

𝑖
)

𝑝/2

}

}

}

. (5)

The following concept of stochastic domination will be
used in this work.

Definition 4. A sequence {𝑋
𝑛
, 𝑛 ≥ 1} of random variables is

said to be stochastically dominated by a random variable𝑋 if
there exists a positive constant 𝐶 such that

𝑃 (
󵄨󵄨󵄨󵄨𝑋𝑛

󵄨󵄨󵄨󵄨 > 𝑥) ≤ 𝐶𝑃 (|𝑋| > 𝑥) (6)

for all 𝑥 ≥ 0 and 𝑛 ≥ 1.

By the definition of stochastic domination and integra-
tion by parts, we can get the following property for stochastic
domination. For the details of the proof, one can refer to Wu
[36, 37] or Shen and Wu [38].

Lemma 5. Let {𝑋
𝑛
, 𝑛 ≥ 1} be a sequence of random variables

which is stochastically dominated by a random variable𝑋. For
any 𝛼 > 0 and 𝑏 > 0, the following two statements hold:

𝐸
󵄨󵄨󵄨󵄨𝑋𝑛

󵄨󵄨󵄨󵄨
𝛼

𝐼 (
󵄨󵄨󵄨󵄨𝑋𝑛

󵄨󵄨󵄨󵄨 ≤ 𝑏) ≤ 𝐶1 [𝐸|𝑋|
𝛼

𝐼 (|𝑋| ≤ 𝑏) + 𝑏
𝛼

𝑃 (|𝑋| > 𝑏)] ,

𝐸
󵄨󵄨󵄨󵄨𝑋𝑛

󵄨󵄨󵄨󵄨
𝛼

𝐼 (
󵄨󵄨󵄨󵄨𝑋𝑛

󵄨󵄨󵄨󵄨 > 𝑏) ≤ 𝐶2𝐸|𝑋|
𝛼

𝐼 (|𝑋| > 𝑏) ,

(7)

where 𝐶
1
and 𝐶

2
are positive constants.

3. Main Results and Their Proofs

Unless otherwise specified, we assume throughout the paper
that 𝑔

𝑛
(𝑥) is defined by (2). For any function 𝑔(𝑥), we use

𝑐(𝑔) to denote all continuity points of the function 𝑔 on 𝐴.
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The norm ‖𝑥‖ is the Eucledean norm. For any fixed design
point 𝑥 ∈ 𝐴, the following assumptions on weight function
𝑊
𝑛𝑖
(𝑥) will be used:

(A
1
) ∑𝑛
𝑖=1
𝑊
𝑛𝑖
(𝑥) → 1 as 𝑛 → ∞;

(A
2
) ∑𝑛
𝑖=1
|𝑊
𝑛𝑖
(𝑥)| ≤ 𝐶 < ∞ for all 𝑛;

(A
3
) ∑𝑛
𝑖=1
|𝑊
𝑛𝑖
(𝑥)| ⋅ |𝑔(𝑥

𝑛𝑖
) − 𝑔(𝑥)|𝐼(‖𝑥

𝑛𝑖
− 𝑥‖ > 𝑎) → 0 as

𝑛 → ∞ for all 𝑎 > 0.

Based on the assumptions above, we can get the following
strong consistency of the fixed design regression estimator
𝑔
𝑛
(𝑥).

Theorem 6. Let {𝜀
𝑛
, 𝑛 ≥ 1} be a sequence of mean zero

ND random variables, which is stochastically dominated by a
random variable 𝑋. Assume that conditions (𝐴

1
)–(𝐴
3
) hold

true. If 𝐸|𝑋|𝑝 < ∞ for some 𝑝 > 1, and if there exist some
𝑠 ∈ (1/𝑝, 1) such that

max
1≤𝑖≤𝑛

󵄨󵄨󵄨󵄨𝑊𝑛𝑖 (𝑥)
󵄨󵄨󵄨󵄨 = 𝑂 (𝑛

−𝑠

) , (8)

then for any 𝑥 ∈ 𝑐(𝑔),

𝑔
𝑛
(𝑥) 󳨀→ 𝑔 (𝑥) a.s., as 𝑛 󳨀→ ∞. (9)

Proof. For 𝑥 ∈ 𝑐(𝑔) and 𝑎 > 0, we have by (1) and (2) that

󵄨󵄨󵄨󵄨𝐸𝑔𝑛 (𝑥) − 𝑔 (𝑥)
󵄨󵄨󵄨󵄨

≤

𝑛

∑
𝑖=1

󵄨󵄨󵄨󵄨𝑊𝑛𝑖 (𝑥)
󵄨󵄨󵄨󵄨 ⋅
󵄨󵄨󵄨󵄨𝑔 (𝑥𝑛𝑖) − 𝑔 (𝑥)

󵄨󵄨󵄨󵄨 𝐼 (
󵄩󵄩󵄩󵄩𝑥𝑛𝑖 − 𝑥

󵄩󵄩󵄩󵄩 ≤ 𝑎)

+

𝑛

∑
𝑖=1

󵄨󵄨󵄨󵄨𝑊𝑛𝑖 (𝑥)
󵄨󵄨󵄨󵄨 ⋅
󵄨󵄨󵄨󵄨𝑔 (𝑥𝑛𝑖) − 𝑔 (𝑥)

󵄨󵄨󵄨󵄨 𝐼 (
󵄩󵄩󵄩󵄩𝑥𝑛𝑖 − 𝑥

󵄩󵄩󵄩󵄩 > 𝑎)

+
󵄨󵄨󵄨󵄨𝑔 (𝑥)

󵄨󵄨󵄨󵄨 ⋅

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑛

∑
𝑖=1

𝑊
𝑛𝑖
(𝑥) − 1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

.

(10)

Since 𝑥 ∈ 𝑐(𝑔), hence for any 𝜀 > 0, there exist a 𝛿 > 0 and
‖𝑥
∗

−𝑥‖ < 𝛿 such that |𝑔(𝑥∗)−𝑔(𝑥)| < 𝜀. If we take 𝑎 ∈ (0, 𝛿)
in (10), we can get that

󵄨󵄨󵄨󵄨𝐸𝑔𝑛 (𝑥) − 𝑔 (𝑥)
󵄨󵄨󵄨󵄨

≤ 𝜀

𝑛

∑
𝑖=1

󵄨󵄨󵄨󵄨𝑊𝑛𝑖 (𝑥)
󵄨󵄨󵄨󵄨 +

󵄨󵄨󵄨󵄨𝑔 (𝑥)
󵄨󵄨󵄨󵄨 ⋅

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑛

∑
𝑖=1

𝑊
𝑛𝑖
(𝑥) − 1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+

𝑛

∑
𝑖=1

󵄨󵄨󵄨󵄨𝑊𝑛𝑖 (𝑥)
󵄨󵄨󵄨󵄨 ⋅
󵄨󵄨󵄨󵄨𝑔 (𝑥𝑛𝑖) − 𝑔 (𝑥)

󵄨󵄨󵄨󵄨 𝐼 (
󵄩󵄩󵄩󵄩𝑥𝑛𝑖 − 𝑥

󵄩󵄩󵄩󵄩 > 𝑎) .

(11)

Therefore, we have by conditions (A
1
)–(A
3
) that

lim
𝑛→∞

𝐸𝑔
𝑛
(𝑥) = 𝑔 (𝑥) , 𝑥 ∈ 𝑐 (𝑔) . (12)

For a fixed design point 𝑥 ∈ 𝑐(𝑔), without loss of generality,
we assume that 𝑊

𝑛𝑖
(𝑥) ≥ 0 (otherwise, we use 𝑊+

𝑛𝑖
(𝑥) and

𝑊
−

𝑛𝑖
(𝑥) instead of 𝑊

𝑛𝑖
(𝑥), resp., and note that 𝑊

𝑛𝑖
(𝑥) =

𝑊
+

𝑛𝑖
(𝑥) − 𝑊

−

𝑛𝑖
(𝑥)).

By (12), we can see that in order to prove (9), we only need
to show that

𝑔
𝑛
(𝑥) − 𝐸𝑔

𝑛
(𝑥) =

𝑛

∑
𝑖=1

𝑊
𝑛𝑖
(𝑥) 𝜀
𝑛𝑖

≐

𝑛

∑
𝑖=1

𝑅
𝑛𝑖
󳨀→ 0 a.s., as 𝑛 󳨀→ ∞,

(13)

where 𝑅
𝑛𝑖
= 𝑊
𝑛𝑖
(𝑥)𝜀
𝑛𝑖
.

For fixed 𝜀 > 0, choose 1/𝑝 < 𝛿 < 𝑠 and some positive
integer𝑁 (to be specified later). Denote, for 𝑖 = 1, 2, . . . , 𝑛,

𝑋
𝑛𝑖
(1) = − 𝑛

−𝛿

𝐼 (𝑅
𝑛𝑖
< −𝑛
−𝛿

) + 𝑅
𝑛𝑖
𝐼 (
󵄨󵄨󵄨󵄨𝑅𝑛𝑖

󵄨󵄨󵄨󵄨 ≤ 𝑛
−𝛿

)

+ 𝑛
−𝛿

𝐼 (𝑅
𝑛𝑖
> 𝑛
−𝛿

) ,

𝑋
𝑛𝑖
(2) = (𝑅

𝑛𝑖
− 𝑛
−𝛿

) 𝐼 (𝑛
−𝛿

< 𝑅
𝑛𝑖
<
𝜀

𝑁
) ,

𝑋
𝑛𝑖
(3) = (𝑅

𝑛𝑖
+ 𝑛
−𝛿

) 𝐼 (−𝑛
−𝛿

> 𝑅
𝑛𝑖
> −

𝜀

𝑁
) ,

𝑋
𝑛𝑖
(4) = (𝑅

𝑛𝑖
− 𝑛
−𝛿

) 𝐼 (𝑅
𝑛𝑖
≥
𝜀

𝑁
)

+ (𝑅
𝑛𝑖
+ 𝑛
−𝛿

) 𝐼 (𝑅
𝑛𝑖
≤ −

𝜀

𝑁
) .

(14)

It is easy to check that𝑋
𝑛𝑖
(1)+𝑋

𝑛𝑖
(2)+𝑋

𝑛𝑖
(3)+𝑋

𝑛𝑖
(4) = 𝑅

𝑛𝑖
.

Hence, to prove (13), it suffices to show that, for any 𝑥 ∈ 𝑐(𝑔),

𝑛

∑
𝑖=1

𝑋
𝑛𝑖
(𝑗) 󳨀→ 0 a.s., as 𝑛 󳨀→ ∞, 𝑗 = 1, 2, 3, 4. (15)

By 𝐸𝜀
𝑛
= 0 and 𝐸|𝑋|𝑝 < ∞, we can see that

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑛

∑
𝑖=1

𝐸𝑋
𝑛𝑖
(1)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤

𝑛

∑
𝑖=1

[𝑛
−𝛿

𝑃 (
󵄨󵄨󵄨󵄨𝑅𝑛𝑖

󵄨󵄨󵄨󵄨 > 𝑛
−𝛿

) + 𝐸
󵄨󵄨󵄨󵄨𝑅𝑛𝑖

󵄨󵄨󵄨󵄨 𝐼 (
󵄨󵄨󵄨󵄨𝑅𝑛𝑖

󵄨󵄨󵄨󵄨 > 𝑛
−𝛿

)]

≤

𝑛

∑
𝑖=1

𝑛
−𝛿
𝐸
󵄨󵄨󵄨󵄨𝑅𝑛𝑖

󵄨󵄨󵄨󵄨
𝑝

𝑛−𝑝𝛿
≤ 𝐶𝑛
𝛿(𝑝−1)

𝑛

∑
𝑖=1

󵄨󵄨󵄨󵄨𝑊𝑛𝑖(𝑥)
󵄨󵄨󵄨󵄨
𝑝

𝐸|𝑋|
𝑝

≤ 𝐶𝑛
𝛿(𝑝−1)

(max
1≤𝑖≤𝑛

󵄨󵄨󵄨󵄨𝑊𝑛𝑖 (𝑥)
󵄨󵄨󵄨󵄨)
𝑝−1 𝑛

∑
𝑖=1

󵄨󵄨󵄨󵄨𝑊𝑛𝑖 (𝑥)
󵄨󵄨󵄨󵄨

≤ 𝐶𝑛
−(𝑝−1)(𝑠−𝛿)

󳨀→ 0, as 𝑛 󳨀→ ∞.

(16)

Hence, to prove ∑𝑛
𝑖=1
𝑋
𝑛𝑖
(1) → 0 a.s., it suffices to show that

∞

∑
𝑛=1

𝑃(

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑛

∑
𝑖=1

(𝑋
𝑛𝑖
(1) − 𝐸𝑋

𝑛𝑖
(1))

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

> 𝜀) < ∞. (17)
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It is easily seen that, for fixed 𝑛 ≥ 1 and 𝑥 ∈ 𝑐(𝑔), {𝑋
𝑛𝑖
(1), 1 ≤

𝑖 ≤ 𝑛} are still ND random variables by Lemma 2. Applying
Lemma 3, we have for 𝑞 ≥ 2 that

∞

∑
𝑛=1

𝑃(

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑛

∑
𝑖=1

(𝑋
𝑛𝑖
(1) − 𝐸𝑋

𝑛𝑖
(1))

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

> 𝜀)

≤ 𝐶

∞

∑
𝑛=1

𝑛

∑
𝑖=1

𝐸
󵄨󵄨󵄨󵄨𝑋𝑛𝑖 (1)

󵄨󵄨󵄨󵄨
𝑞

+ 𝐶

∞

∑
𝑛=1

(

𝑛

∑
𝑖=1

𝐸
󵄨󵄨󵄨󵄨𝑋𝑛𝑖 (1)

󵄨󵄨󵄨󵄨
2

)

𝑞/2

≐ 𝐶𝐼
11
+ 𝐶𝐼
12
.

(18)

Taking 𝑞 > max{𝑝, (𝑠 + 1 + 𝑝(𝛿 − 𝑠))/𝛿, 2/((𝑠 − 𝛿)(𝑝 − 1) +
𝛿), 2/𝑠}, we can get that

(𝑞 − 𝑝) 𝛿 + 𝑠 (𝑝 − 1) > 1,
𝑞𝑠

2
> 1,

[(2 − 𝑝) 𝛿 + 𝑠 (𝑝 − 1)] 𝑞

2
=
[(𝑠 − 𝛿) (𝑝 − 1) + 𝛿] 𝑞

2
> 1.

(19)

For 𝐼
11
, we have by 𝐶

𝑟
’s inequality, Lemma 5, and condi-

tion (A
2
) that

𝐼
11
≤ 𝐶

∞

∑
𝑛=1

𝑛

∑
𝑖=1

[𝑛
−𝑞𝛿

𝑃 (
󵄨󵄨󵄨󵄨𝑅𝑛𝑖

󵄨󵄨󵄨󵄨 > 𝑛
−𝛿

)

+𝐸
󵄨󵄨󵄨󵄨𝑅𝑛𝑖

󵄨󵄨󵄨󵄨
𝑞

𝐼 (
󵄨󵄨󵄨󵄨𝑅𝑛𝑖

󵄨󵄨󵄨󵄨 ≤ 𝑛
−𝛿

)]

≤ 𝐶

∞

∑
𝑛=1

𝑛

∑
𝑖=1

[𝑛
−𝑞𝛿

𝑃 (
󵄨󵄨󵄨󵄨𝑊𝑛𝑖 (𝑥)𝑋

󵄨󵄨󵄨󵄨 > 𝑛
−𝛿

)

+𝐸
󵄨󵄨󵄨󵄨𝑊𝑛𝑖 (𝑥)𝑋

󵄨󵄨󵄨󵄨
𝑞

𝐼 (
󵄨󵄨󵄨󵄨𝑊𝑛𝑖 (𝑥)𝑋

󵄨󵄨󵄨󵄨 ≤ 𝑛
−𝛿

)]

≤ 𝐶

∞

∑
𝑛=1

𝑛

∑
𝑖=1

𝑛
−𝑞𝛿

𝐸
󵄨󵄨󵄨󵄨𝑊𝑛𝑖(𝑥)𝑋

󵄨󵄨󵄨󵄨
𝑝

𝑛−𝑝𝛿

≤ 𝐶

∞

∑
𝑛=1

𝑛
−(𝑞−𝑝)𝛿

(max
1≤𝑖≤𝑛

󵄨󵄨󵄨󵄨𝑊𝑛𝑖 (𝑥)
󵄨󵄨󵄨󵄨)
𝑝−1

×

𝑛

∑
𝑖=1

󵄨󵄨󵄨󵄨𝑊𝑛𝑖 (𝑥)
󵄨󵄨󵄨󵄨

≤ 𝐶

∞

∑
𝑛=1

𝑛
−[(𝑞−𝑝)𝛿+𝑠(𝑝−1)]

< ∞.

(20)

For 𝐼
12
, if 1 < 𝑝 < 2, we have by the proof of (20) that

𝐼
12
≤ 𝐶

∞

∑
𝑛=1

{

𝑛

∑
𝑖=1

[𝑛
−2𝛿

𝑃 (
󵄨󵄨󵄨󵄨𝑅𝑛𝑖

󵄨󵄨󵄨󵄨 > 𝑛
−𝛿

)

+𝐸
󵄨󵄨󵄨󵄨𝑅𝑛𝑖

󵄨󵄨󵄨󵄨
2

𝐼 (
󵄨󵄨󵄨󵄨𝑅𝑛𝑖

󵄨󵄨󵄨󵄨 ≤ 𝑛
−𝛿

)]}

𝑞/2

≤ 𝐶

∞

∑
𝑛=1

𝑛
−[(2−𝑝)𝛿+𝑠(𝑝−1)]𝑞/2

< ∞;

(21)

if 𝑝 ≥ 2, we have by 𝐸𝑋2 < ∞ that

𝐼
12
≤ 𝐶

∞

∑
𝑛=1

{

𝑛

∑
𝑖=1

[𝑛
−2𝛿

𝑃 (
󵄨󵄨󵄨󵄨𝑅𝑛𝑖

󵄨󵄨󵄨󵄨 > 𝑛
−𝛿

)

+𝐸
󵄨󵄨󵄨󵄨𝑅𝑛𝑖

󵄨󵄨󵄨󵄨
2

𝐼 (
󵄨󵄨󵄨󵄨𝑅𝑛𝑖

󵄨󵄨󵄨󵄨 ≤ 𝑛
−𝛿

)]}

𝑞/2

≤ 𝐶

∞

∑
𝑛=1

{

𝑛

∑
𝑖=1

[𝑛
−2𝛿

𝑃 (
󵄨󵄨󵄨󵄨𝑊𝑛𝑖(𝑥)𝑋

󵄨󵄨󵄨󵄨 > 𝑛
−𝛿

) +𝑊
2

𝑛𝑖
(𝑥)]}

𝑞/2

≤ 𝐶

∞

∑
𝑛=1

𝑛
−[(2−𝑝)𝛿+𝑠(𝑝−1)]𝑞/2

+ 𝐶

∞

∑
𝑛=1

𝑛
−𝑞𝑠/2

< ∞.

(22)

By (18)–(22), we can get (17), which together with (16) imply
that ∑𝑛

𝑖=1
𝑋
𝑛𝑖
(1) → 0 a.s.

Next, we will prove that ∑𝑛
𝑖=1
𝑋
𝑛𝑖
(2) → 0 a.s. Since 0 ≤

𝑋
𝑛𝑖
(2) < 𝜀/𝑁, | ∑𝑛

𝑖=1
𝑋
𝑛𝑖
(2)| = ∑

𝑛

𝑖=1
𝑋
𝑛𝑖
(2) > 𝜀 implies that

there are at least𝑁 𝑖’s such that𝑋
𝑛𝑖
(2) ̸= 0. Hence,

𝑃(

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑛

∑
𝑖=1

𝑋
𝑛𝑖
(2)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

> 𝜀)

≤ 𝑃 (there are at least 𝑁 𝑖’s such that 𝑋
𝑛𝑖
(2) ̸= 0)

≤ ∑
1≤𝑖
1
<𝑖
2
<⋅⋅⋅<𝑖
𝑁
≤𝑛

𝑃 (𝑋
𝑛𝑖
1
(2) ̸= 0, 𝑋

𝑛𝑖
2
(2) ̸= 0,

. . . , 𝑋
𝑛𝑖
𝑁
(2) ̸= 0)

≤ ∑
1≤𝑖
1
<𝑖
2
<⋅⋅⋅<𝑖
𝑁
≤𝑛

𝑃 (𝑅
𝑛𝑖
1

> 𝑛
−𝛿

, 𝑅
𝑛𝑖
2

> 𝑛
−𝛿

, . . . , 𝑅
𝑛𝑖
𝑁

> 𝑛
−𝛿

)

≤ ∑
1≤𝑖
1
<𝑖
2
<⋅⋅⋅<𝑖
𝑁
≤𝑛

𝑃 (𝑅
𝑛𝑖
1

> 𝑛
−𝛿

) 𝑃 (𝑅
𝑛𝑖
2

> 𝑛
−𝛿

)

⋅ ⋅ ⋅ 𝑃 (𝑅
𝑛𝑖
𝑁

> 𝑛
−𝛿

)

≤ [

𝑛

∑
𝑖=1

𝑃 (𝑅
𝑛𝑖
> 𝑛
−𝛿

)]

𝑁

≤ [

𝑛

∑
𝑖=1

𝑃 (
󵄨󵄨󵄨󵄨𝑅𝑛𝑖

󵄨󵄨󵄨󵄨 > 𝑛
−𝛿

)]

𝑁

≤ 𝐶[

𝑛

∑
𝑖=1

𝐸
󵄨󵄨󵄨󵄨𝑊𝑛𝑖(𝑥)𝑋

󵄨󵄨󵄨󵄨
𝑝

𝑛−𝑝𝛿
]

𝑁

≤ 𝐶[𝑛
𝑝𝛿

(max
1≤𝑖≤𝑛

󵄨󵄨󵄨󵄨𝑊𝑛𝑖 (𝑥)
󵄨󵄨󵄨󵄨)
𝑝−1 𝑛

∑
𝑖=1

󵄨󵄨󵄨󵄨𝑊𝑛𝑖 (𝑥)
󵄨󵄨󵄨󵄨]

𝑁

≤ 𝐶𝑛
−[(𝑠−𝛿)𝑝+𝑠]𝑁

,

(23)

which is summable if we choose large integer𝑁 such that [(𝑠−
𝛿)𝑝+𝑠]𝑁 > 1. Hence,∑𝑛

𝑖=1
𝑋
𝑛𝑖
(2) → 0 a.s. by Borel-Cantelli

lemma.
Since −𝜀/𝑁 < 𝑋

𝑛𝑖
(3) ≤ 0, | ∑𝑛

𝑖=1
𝑋
𝑛𝑖
(3)| =

−∑
𝑛

𝑖=1
𝑋
𝑛𝑖
(3) > 𝜀 implies that there are at least 𝑁 𝑖’s such

that 𝑋
𝑛𝑖
(3) ̸= 0. Similarly, we have ∑𝑛

𝑖=1
𝑋
𝑛𝑖
(3) → 0 a.s. as

𝑛 → ∞.
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Finally, we will prove that ∑𝑛
𝑖=1
𝑋
𝑛𝑖
(4) → 0 a.s. as 𝑛 →

∞. It is easily seen that
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑛

∑
𝑖=1

𝑋
𝑛𝑖
(4)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤

𝑛

∑
𝑖=1

󵄨󵄨󵄨󵄨𝑅𝑛𝑖
󵄨󵄨󵄨󵄨 𝐼 (

󵄨󵄨󵄨󵄨𝑅𝑛𝑖
󵄨󵄨󵄨󵄨 ≥

𝜀

𝑁
) + 𝑛
−𝛿

𝑛

∑
𝑖=1

𝐼 (
󵄨󵄨󵄨󵄨𝑅𝑛𝑖

󵄨󵄨󵄨󵄨 ≥
𝜀

𝑁
)

≤ 𝐶𝑛
−𝑠

𝑛

∑
𝑖=1

󵄨󵄨󵄨󵄨𝜀𝑛𝑖
󵄨󵄨󵄨󵄨 𝐼 (

󵄨󵄨󵄨󵄨𝜀𝑛𝑖
󵄨󵄨󵄨󵄨 ≥ 𝐶𝑛

𝑠

) + 𝑛
−𝛿

𝑛

∑
𝑖=1

𝐼 (
󵄨󵄨󵄨󵄨𝜀𝑛𝑖
󵄨󵄨󵄨󵄨 ≥ 𝐶𝑛

𝑠

)

≤ 𝐶𝑛
−𝑠

𝑛

∑
𝑖=1

󵄨󵄨󵄨󵄨𝜀𝑛𝑖
󵄨󵄨󵄨󵄨 𝐼 (

󵄨󵄨󵄨󵄨𝜀𝑛𝑖
󵄨󵄨󵄨󵄨 ≥ 𝐶𝑖

𝑠

) + 𝑛
−𝛿

𝑛

∑
𝑖=1

𝐼 (
󵄨󵄨󵄨󵄨𝜀𝑛𝑖
󵄨󵄨󵄨󵄨 ≥ 𝐶𝑖

𝑠

)

≐ 𝐻
𝑛1
+ 𝐻
𝑛2
.

(24)

To prove that ∑𝑛
𝑖=1
𝑋
𝑛𝑖
(4) → 0 a.s. as 𝑛 → ∞, it suffices

to show that 𝐻
𝑛1

→ 0 a.s. and 𝐻
𝑛2

→ 0 a.s. as 𝑛 → ∞.
Firstly, we will show that

∞

∑
𝑖=1

𝑖
−𝑠 󵄨󵄨󵄨󵄨𝜀𝑛𝑖

󵄨󵄨󵄨󵄨 𝐼 (
󵄨󵄨󵄨󵄨𝜀𝑛𝑖
󵄨󵄨󵄨󵄨 ≥ 𝐶𝑖

𝑠

) < ∞ a.s., (25)

∞

∑
𝑖=1

𝑖
−𝛿

𝐼 (
󵄨󵄨󵄨󵄨𝜀𝑛𝑖
󵄨󵄨󵄨󵄨 ≥ 𝐶𝑖

𝑠

) < ∞ a.s. (26)

Denote that 𝑇
𝑚
= ∑
𝑚

𝑖=1
𝑖
−𝑠

|𝜀
𝑛𝑖
|𝐼(|𝜀
𝑛𝑖
| ≥ 𝐶𝑖

𝑠

). For𝑚 ≥ 𝑘 ≥ 1, it
follows by Lemma 5 and 𝐸|𝑋|𝑝 < ∞ that

𝐸
󵄨󵄨󵄨󵄨𝑇𝑚 − 𝑇𝑘

󵄨󵄨󵄨󵄨 =

𝑚

∑
𝑖=𝑘+1

𝑖
−𝑠

𝐸
󵄨󵄨󵄨󵄨𝜀𝑛𝑖
󵄨󵄨󵄨󵄨 𝐼 (

󵄨󵄨󵄨󵄨𝜀𝑛𝑖
󵄨󵄨󵄨󵄨 ≥ 𝐶𝑖

𝑠

)

≤ 𝐶

𝑚

∑
𝑖=𝑘+1

𝑖
−𝑠

𝐸 |𝑋| 𝐼 (|𝑋| ≥ 𝐶𝑖
𝑠

)

≤ 𝐶

𝑚

∑
𝑖=𝑘+1

𝑖
−𝑠𝑝

≤ 𝐶𝑘
−𝑠𝑝+1

󳨀→ 0 as 𝑘 󳨀→ ∞,

(27)

which implies that {𝑇
𝑚
, 𝑚 ≥ 1} is a Cauchy sequence in 𝐿

1
,

and hence there exists a random variable 𝑇 such that 𝐸|𝑇| <
∞ and𝐸|𝑇

𝑚
−𝑇| → 0. It follows by Lemma 5 and𝐸|𝑋|𝑝 < ∞

again that

𝑃 (
󵄨󵄨󵄨󵄨𝑇2𝑘 − 𝑇

󵄨󵄨󵄨󵄨 > 𝜀)

≤ 𝐶𝐸
󵄨󵄨󵄨󵄨𝑇2𝑘 − 𝑇

󵄨󵄨󵄨󵄨 ≤ 𝐶 lim sup
𝑚→∞

𝐸
󵄨󵄨󵄨󵄨𝑇2𝑘 − 𝑇𝑚

󵄨󵄨󵄨󵄨

≤ 𝐶

∞

∑

𝑖=2
𝑘
+1

𝑖
−𝑠

𝐸
󵄨󵄨󵄨󵄨𝜀𝑛𝑖
󵄨󵄨󵄨󵄨 𝐼 (

󵄨󵄨󵄨󵄨𝜀𝑛𝑖
󵄨󵄨󵄨󵄨 ≥ 𝐶𝑖

𝑠

)

≤ 𝐶

∞

∑

𝑖=2
𝑘
+1

𝑖
−𝑠

𝐸 |𝑋| 𝐼 (|𝑋| ≥ 𝐶𝑖
𝑠

)

≤ 𝐶

∞

∑

𝑖=2
𝑘
+1

𝑖
−𝑠𝑝

≤ 𝐶2
−𝑘(𝑠𝑝−1)

,

𝑃 ( max
2
𝑘−1
<𝑚≤2

𝑘

󵄨󵄨󵄨󵄨𝑇𝑚 − 𝑇2𝑘−1
󵄨󵄨󵄨󵄨 > 𝜀)

≤ 𝐶𝐸( max
2
𝑘−1
<𝑚≤2

𝑘

󵄨󵄨󵄨󵄨𝑇𝑚 − 𝑇2𝑘−1
󵄨󵄨󵄨󵄨)

≤ 𝐶

2
𝑘

∑

𝑖=2
𝑘−1
+1

𝑖
−𝑠

𝐸
󵄨󵄨󵄨󵄨𝜀𝑛𝑖
󵄨󵄨󵄨󵄨 𝐼 (

󵄨󵄨󵄨󵄨𝜀𝑛𝑖
󵄨󵄨󵄨󵄨 ≥ 𝐶𝑖

𝑠

)

≤ 𝐶

2
𝑘

∑

𝑖=2
𝑘−1
+1

𝑖
−𝑠𝑝

≤ 𝐶2
−𝑘(𝑠𝑝−1)

,

(28)

which together imply that 𝑇
𝑚
→ 𝑇 a.s., and thus (25) holds.

Similarly, we can get (26). Therefore, 𝐻
𝑛1

→ 0 a.s. and
𝐻
𝑛2
→ 0 a.s. follow by (25)-(26) and the Kronecker’s lemma

immediately. This completes the proof of the theorem.

As an application of Theorem 6, we give the strong con-
sistency for the nearest neighbor estimator of 𝑔(𝑥). Without
loss of generality, putting 𝐴 = [0, 1], taking 𝑥

𝑛𝑖
= 𝑖/𝑛,

𝑖 = 1, 2, . . . , 𝑛, and 𝑛 ≥ 1. For any 𝑥 ∈ 𝐴, we rewrite
|𝑥
𝑛1
− 𝑥|, |𝑥

𝑛2
− 𝑥|, . . . , |𝑥

𝑛𝑛
− 𝑥| as follows:

󵄨󵄨󵄨󵄨󵄨
𝑥
(𝑛)

𝑅
1
(𝑥)
− 𝑥

󵄨󵄨󵄨󵄨󵄨
≤
󵄨󵄨󵄨󵄨󵄨
𝑥
(𝑛)

𝑅
2(𝑥)

− 𝑥
󵄨󵄨󵄨󵄨󵄨
≤ ⋅ ⋅ ⋅ ≤

󵄨󵄨󵄨󵄨󵄨
𝑥
(𝑛)

𝑅
𝑛(𝑥)

− 𝑥
󵄨󵄨󵄨󵄨󵄨
. (29)

If |𝑥
𝑛𝑖
−𝑥| = |𝑥

𝑛𝑗
−𝑥|, then |𝑥

𝑛𝑖
−𝑥| is permuted before |𝑥

𝑛𝑗
−𝑥|

when 𝑥
𝑛𝑖
< 𝑥
𝑛𝑗
.

Let 1 ≤ 𝑘
𝑛
≤ 𝑛, the nearest neighbor weight function

estimator of 𝑔(𝑥) in model (1) is defined as follows:

𝑔
𝑛
(𝑥) =

𝑛

∑
𝑖=1

𝑊̃
𝑛𝑖
(𝑥) 𝑌
𝑛𝑖
, (30)

where

𝑊̃
𝑛𝑖
(𝑥) =

{

{

{

1

𝑘
𝑛

, if 󵄨󵄨󵄨󵄨𝑥𝑛𝑖 − 𝑥
󵄨󵄨󵄨󵄨 ≤

󵄨󵄨󵄨󵄨󵄨󵄨
𝑥
(𝑛)

𝑅
𝑘𝑛
(𝑥)
− 𝑥

󵄨󵄨󵄨󵄨󵄨󵄨
,

0, otherwise.
(31)

Based on the notations above, we can get the following
result by usingTheorem 6.

Corollary 7. Let {𝜀
𝑛
, 𝑛 ≥ 1} be a sequence of mean zero

ND random variables, which is stochastically dominated by
a random variable 𝑋. Assume that 𝑔 is continuous on the
compact set 𝐴. If 𝐸|𝑋|𝑝 < ∞ for some 𝑝 > 1 and if there exists
some 𝑠 ∈ (1/𝑝, 1) such that 𝑘

𝑛
= [𝑛
𝑠

], then for any 𝑥 ∈ 𝑐(𝑔),

𝑔
𝑛
(𝑥) 󳨀→ 𝑔 (𝑥) a.s., as 𝑛 󳨀→ ∞. (32)

Proof. It suffices to show that the conditions ofTheorem 6 are
satisfied. Since 𝑔 is continuous on the compact set𝐴, hence 𝑔
is uniformly continuous on the compact set𝐴, which implies
that {|𝑔(𝑥

𝑛𝑖
) − 𝑔(𝑥)| : 1 ≤ 𝑖 ≤ 𝑛, 𝑛 ≥ 1} is bounded on the set

𝐴.
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For any 𝑥 ∈ [0, 1], if follows from the definition of 𝑅
𝑖
(𝑥)

and 𝑊̃
𝑛𝑖
(𝑥) that

𝑛

∑
𝑖=1

𝑊̃
𝑛𝑖
(𝑥) =

𝑛

∑
𝑖=1

𝑊̃
𝑛𝑅
𝑖
(𝑥)
(𝑥) =

𝑘
𝑛

∑
𝑖=1

1

𝑘
𝑛

= 1,

max
1≤𝑖≤𝑛

𝑊̃
𝑛𝑖
(𝑥) =

1

𝑘
𝑛

, 𝑊̃
𝑛𝑖
(𝑥) ≥ 0,

𝑛

∑
𝑖=1

󵄨󵄨󵄨󵄨󵄨
𝑊̃
𝑛𝑖
(𝑥)
󵄨󵄨󵄨󵄨󵄨
⋅
󵄨󵄨󵄨󵄨𝑔 (𝑥𝑛𝑖) − 𝑔 (𝑥)

󵄨󵄨󵄨󵄨 𝐼 (
󵄨󵄨󵄨󵄨𝑥𝑛𝑖 − 𝑥

󵄨󵄨󵄨󵄨 > 𝑎)

≤ 𝐶

𝑛

∑
𝑖=1

(𝑥
𝑛𝑖
− 𝑥)
2 󵄨󵄨󵄨󵄨󵄨
𝑊̃
𝑛𝑖
(𝑥)
󵄨󵄨󵄨󵄨󵄨

𝑎2

= 𝐶

𝑘
𝑛

∑
𝑖=1

(𝑥
(𝑛)

𝑅
𝑖
(𝑥)
− 𝑥)
2

𝑘
𝑛
𝑎2

≤ 𝐶

𝑘
𝑛

∑
𝑖=1

(𝑖/𝑛)
2

𝑘
𝑛
𝑎2

≤ 𝐶(
𝑘
𝑛

𝑛𝑎
)

2

, ∀𝑎 > 0.

(33)

Hence, conditions (A
1
)–(A
3
) and (8) are satisfied. By

Theorem 6, we can get (32) immediately. This completes the
proof of the corollary.
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