177 research outputs found

    Whether there are different organisational culture typologies in contemporary UK universities?

    Get PDF
    In this increasingly competitive world, business organisations are evolving, so does the educational sector. However, this change mixed with hope and fear. In 2018, a large-scale industrial action held by lecturers from many prestigious UK universities. It is a strike over pension cuts, nevertheless, what lies behind is an undergoing transformation subject to political and economic changes. This strike led to a serious question of what modern universities are and whether their culture has changed. A novel and systematic qualitative content analysis was conducted. According to the findings, there are four types of organisational culture co-exist in most UK universities; however, the balance has tilted to the entrepreneurial side. Notwithstanding the worrying situation of a public service turning into some profit-driven organisations, lecturers who involve in teaching and research still believe in the original mission of universities

    Propofol inhibits neuroinflammation and metabolic reprogramming in microglia in vitro and in vivo

    Get PDF
    Microglial activation-induced neuroinflammation is closely related to the development of sepsis-associated encephalopathy. Accumulating evidence suggests that changes in the metabolic profile of microglia is crucial for their response to inflammation. Propofol is widely used for sedation in mechanically ventilated patients with sepsis. Here, we investigate the effect of propofol on lipopolysaccharide-induced neuroinflammation, neuronal injuries, microglia metabolic reprogramming as well as the underlying molecular mechanisms. The neuroprotective effects of propofol (80 mg/kg) in vivo were measured in the lipopolysaccharide (2 mg/kg)-induced sepsis in mice through behavioral tests, Western blot analysis and immunofluorescent staining. The anti-inflammatory effects of propofol (50 μM) in microglial cell cultures under lipopolysaccharide (10 ng/ml) challenge were examined with Seahorse XF Glycolysis Stress test, ROS assay, Western blot, and immunofluorescent staining. We showed that propofol treatment reduced microglia activation and neuroinflammation, inhibited neuronal apoptosis and improved lipopolysaccharide-induced cognitive dysfunction. Propofol also attenuated lipopolysaccharide-stimulated increases of inducible nitric oxide synthase, nitric oxide, tumor necrosis factor-α, interlukin-1β and COX-2 in cultured BV-2 cells. Propofol-treated microglia showed a remarkable suppression of lipopolysaccharide-induced HIF-1α, PFKFB3, HK2 expression and along with downregulation of the ROS/PI3K/Akt/mTOR signaling pathway. Moreover, propofol attenuated the enhancement of mitochondrial respiration and glycolysis induced by lipopolysaccharide. Together, our data suggest that propofol attenuated inflammatory response by inhibiting metabolic reprogramming, at least in part, through downregulation of the ROS/PI3K/Akt/mTOR/HIF-1α signaling pathway

    Negative magnetodielectric effect in CaCu₃Ti₄O₁₂

    No full text
    Real part of complex relative dielectric value is relatively decreased as large as  ∼5 % from 50 K to 200 K in CaCu₃Ti₄O₁₂, by applying a 6-T static magnetic field. CaCu₃Ti₄O₁₂ is thus implied primarily by the negative magnetodielectric effect, as a unified dielectric system in which 1-D finite dipole chains of B-site titanium ions, coexist with a collective of polaron-like 3d-electrons of A-site copper ions: the dipole chains are thermally activated for lattice ionic polarization above 50 K, and suppressed by the short-range hop of these quasi-particles, while their long-range movement are for bulk electronic polarization above 151 K.This work was supported by the National Natural Science Foundation of China (Grant No. 11004106) and the National 973 Project (Nos. 2011CB922101 and 2009CB623303)

    The prebiotic effects of oats on blood lipids, gut microbiota, and short-chain fatty acids in mildly hypercholesterolemic subjects compared with rice: a randomized, controlled trial

    Get PDF
    20openInternationalInternational coauthor/editorPhytochemicals derived from oats are reported to possess a beneficial effect on modulating dyslipidemia, specifically on lowering total and LDL cholesterol. However, deeper insights into its mechanism remain unclear. In this randomized controlled study, we assigned 210 mildly hypercholesterolemic subjects from three study centers across China (Beijing, Nanjing, and Shanghai) to consume 80 g of oats or rice daily for 45 days. Plasma lipid profiles, short chain fatty acids (SCFAs), and fecal microbiota were measured. The results showed that total cholesterol (TC) and non-high-density lipoprotein cholesterol (non-HDL-C) decreased significantly with both oats and rice intake after 30 and 45 days. The reduction in TC and non-HDL-C was greater in the participants consuming oats compared with rice at day 45 (p = 0.011 and 0.049, respectively). Oat consumption significantly increased the abundance of Akkermansia muciniphila and Roseburia, and the relative abundance of Dialister, Butyrivibrio, and Paraprevotella, and decreased unclassified f-Sutterellaceae. In the oat group, Bifidobacterium abundance was negatively correlated with LDL-C (p = 0.01, r = −0.31) and, TC and LDL-C were negatively correlated to Faecalibacterium prausnitzii (p = 0.02, r = −0.29; p = 0.03, r = −0.27, respectively). Enterobacteriaceae, Roseburia, and Faecalibacterium prausnitzii were positively correlated with plasma butyric acid and valeric acid concentrations and negatively correlated to isobutyric acid. HDL-C was negatively correlated with valeric acid (p = 0.02, r = −0.25) and total triglyceride (TG) was positively correlated to isovaleric acid (p = 0.03, r = 0.23). Taken together, oats consumption significantly reduced TC and LDL-C, and also mediated a prebiotic effect on gut microbiome. Akkermansia muciniphila, Roseburia, Bifidobacterium, and Faecalibacterium prausnitzii, and plasma SCFA correlated with oat-induced changes in plasma lipids, suggesting prebiotic activity of oats to modulate gut microbiome could contribute towards its cholesterol-lowering effect.openXu, Dengfeng; Feng, Meiyuan; Chu, YiFang; Wang, Shaokang; Shete, Varsha; Tuohy, Kieran M; Liu, Feng; Zhou, Xirui; Kamil, Alison; Pan, Da; Liu, Hechun; Yang, Xian; Yang, Chao; Zhu, Baoli; Lv, Na; Xiong, Qian; Wang, Xin; Sun, Jianqin; Sun, Guiju; Yang, YuexinXu, D.; Feng, M.; Chu, Y.; Wang, S.; Shete, V.; Tuohy, K.M.; Liu, F.; Zhou, X.; Kamil, A.; Pan, D.; Liu, H.; Yang, X.; Yang, C.; Zhu, B.; Lv, N.; Xiong, Q.; Wang, X.; Sun, J.; Sun, G.; Yang, Y

    Deep-Learning-Enabled Fast Optical Identification and Characterization of Two-Dimensional Materials

    Full text link
    Advanced microscopy and/or spectroscopy tools play indispensable role in nanoscience and nanotechnology research, as it provides rich information about the growth mechanism, chemical compositions, crystallography, and other important physical and chemical properties. However, the interpretation of imaging data heavily relies on the "intuition" of experienced researchers. As a result, many of the deep graphical features obtained through these tools are often unused because of difficulties in processing the data and finding the correlations. Such challenges can be well addressed by deep learning. In this work, we use the optical characterization of two-dimensional (2D) materials as a case study, and demonstrate a neural-network-based algorithm for the material and thickness identification of exfoliated 2D materials with high prediction accuracy and real-time processing capability. Further analysis shows that the trained network can extract deep graphical features such as contrast, color, edges, shapes, segment sizes and their distributions, based on which we develop an ensemble approach topredict the most relevant physical properties of 2D materials. Finally, a transfer learning technique is applied to adapt the pretrained network to other applications such as identifying layer numbers of a new 2D material, or materials produced by a different synthetic approach. Our artificial-intelligence-based material characterization approach is a powerful tool that would speed up the preparation, initial characterization of 2D materials and other nanomaterials and potentially accelerate new material discoveries

    Type A personality, sleep quality, and cerebral small vessel disease: investigating the mediating role of sleep in a community-based study

    Get PDF
    PurposeType A behavior pattern (TABP) is a personality type characterized by rapid speech, impatience, competition, and hostility. Asymptomatic cerebral small vessel disease (CSVD) is often endemic in older adults. Individuals with TABP commonly experience suboptimal sleep quality, and a correlation exists between sleep disturbances and CSVD. We investigated the relationship between TABP and CSVD markers and further explored the mediating role of sleep quality in the relationship between TABP and CSVD.MethodsA cross-sectional survey included 764 community-dwelling adults aged 55–85 years. The TABP Scale and the Pittsburgh Sleep Quality Index (PSQI) were used to assess personality and sleep quality, respectively. Linear and logistic regression analyses were used to examine relationships between variables of interest. In addition, mediation analyses with bootstrapping were used to test whether sleep quality mediated the relationship between TABP and CSVD.ResultsOf the 764 participants [median age 65 (61–69) years, 59.9% female], the population with type A personality accounted for 44.8%. After adjusting for covariates, TABP scores (p = 0.03) and PSQI scores (p < 0.001) were significantly correlated with CSVD. In addition, sleep quality partially mediated the association between type A behavior and CSVD, and the mediating effect was 10.67%.ConclusionThis study showed that type A behavior was a risk factor for CSVD among older community-dwelling adults and that sleep quality mediated the relationship between type A behavior and CSVD. Changing type A behavior may help improve sleep quality, which may in turn reduce the prevalence of CSVD
    corecore