4,538 research outputs found

    Global river economic belts can become more sustainable by considering economic and ecological processes

    Get PDF
    High-quality regional development requires coupling of socioeconomic and natural domains, but it remains unclear how to effectively integrate the regional economy with river basin ecosystems. Here we establish a developmental perspective of 65 river economic belts, formed through history along the main stems of the world’s great rivers, covering initial, developing, and developed stages. We find that river economic belts characterized by basin-based regional integration can substantially upgrade their eco-efficiency through the harmonization of enhanced regional economic growth and efficient utilization of basin resources, once key prerequisites (e.g., gross domestic product per capita, de-industrialization status, and human development index) are met for river economic belts entering the developed stage. Importantly, primary concerns such as resource stress, environmental pollution, and biodiversity loss are also inherently addressed. Under representative scenarios of regional development planning and climate change (2015–2050), the basin-based regional integration strategy would provide river economic belts with new opportunities and pathways towards sustainability in emerging regions worldwide.</p

    Mathematical modeling of simultaneous carbon-nitrogen-sulfur removal from industrial wastewater

    Get PDF
    A mathematical model of carbon, nitrogen and sulfur removal (C-N-S) from industrial wastewater was constructed considering the interactions of sulfate-reducing bacteria (SRB), sulfide-oxidizing bacteria (SOB), nitrate-reducing bacteria (NRB), facultative bacteria (FB), and methane producing archaea (MPA). For the kinetic network, the bioconversion of C-N by heterotrophic denitrifiers (NO\ua0→\ua0NO\ua0→\ua0N), and that of C-S by SRB (SO\ua0→\ua0S) and SOB (S\ua0→\ua0S) was proposed and calibrated based on batch experimental data. The model closely predicted the profiles of nitrate, nitrite, sulfate, sulfide, lactate, acetate, methane and oxygen under both anaerobic and micro-aerobic conditions. The best-fit kinetic parameters had small 95% confidence regions with mean values approximately at the center. The model was further validated using independent data sets generated under different operating conditions. This work was the first successful mathematical modeling of simultaneous C-N-S removal from industrial wastewater and more importantly, the proposed model was proven feasible to simulate other relevant processes, such as sulfate-reducing, sulfide-oxidizing process (SR-SO) and denitrifying sulfide removal (DSR) process. The model developed is expected to enhance our ability to predict the treatment of carbon-nitrogen-sulfur contaminated industrial wastewater

    Applications of VirScan to broad serological profiling of bat reservoirs for emerging zoonoses

    Get PDF
    IntroductionBats are important providers of ecosystem services such as pollination, seed dispersal, and insect control but also act as natural reservoirs for virulent zoonotic viruses. Bats host multiple viruses that cause life-threatening pathology in other animals and humans but, themselves, experience limited pathological disease from infection. Despite bats’ importance as reservoirs for several zoonotic viruses, we know little about the broader viral diversity that they host. Bat virus surveillance efforts are challenged by difficulties of field capture and the limited scope of targeted PCR- or ELISA-based molecular and serological detection. Additionally, virus shedding is often transient, thus also limiting insights gained from nucleic acid testing of field specimens. Phage ImmunoPrecipitation Sequencing (PhIP-Seq), a broad serological tool used previously to comprehensively profile viral exposure history in humans, offers an exciting prospect for viral surveillance efforts in wildlife, including bats.MethodsHere, for the first time, we apply PhIP-Seq technology to bat serum, using a viral peptide library originally designed to simultaneously assay exposures to the entire human virome.ResultsUsing VirScan, we identified past exposures to 57 viral genera—including betacoronaviruses, henipaviruses, lyssaviruses, and filoviruses—in semi-captive Pteropus alecto and to nine viral genera in captive Eonycteris spelaea. Consistent with results from humans, we find that both total peptide hits (the number of enriched viral peptides in our library) and the corresponding number of inferred past virus exposures in bat hosts were correlated with poor bat body condition scores and increased with age. High and low body condition scores were associated with either seropositive or seronegative status for different viruses, though in general, virus-specific age-seroprevalence curves defied assumptions of lifelong immunizing infection, suggesting that many bat viruses may circulate via complex transmission dynamics.DiscussionOverall, our work emphasizes the utility of applying biomedical tools, like PhIP-Seq, first developed for humans to viral surveillance efforts in wildlife, while highlighting opportunities for taxon-specific improvements

    Systematic review of the perioperative immunotherapy in patients with non-small cell lung cancer: evidence mapping and synthesis

    Get PDF
    ObjectivesThis study aimed to use evidence mapping to provide an overview of immune checkpoint inhibitors (ICIs) as perioperative treatments for non-small cell lung cancer (NSCLC) and to identify areas of this field where future research is most urgently needed.MethodsMultiple databases (PubMed, EMBASE, Cochrane Library, and Web of Science) were searched to identify clinical trials published up to November 2021 that examined the effect of perioperative ICIs for perioperative treatment of NSCLC. Study design, sample size, patient characteristics, therapeutic regimens, clinical stages, short-term and long-term therapeutic outcomes, surgery associated parameters, and therapeutic safety were examined.ResultsWe included 66 trials (3564 patients) and used evidence mapping to characterize the available data. For surgery associated outcomes, sixty-two studies (2480 patients) provided complete information regarding the use of surgery after neoadjuvant immunotherapy and data on R0 resection were available in 42 studies (1680 patients); for short-term clinical outcomes, 57 studies (1842 patients) evaluated pathologic complete response (pCR) after neoadjuvant immunotherapy and most of included studies achieved pCR in the range of 30 to 40%; for long-term clinical outcomes, 15 studies (1932 patients) reported DFS, with a median range of 17.9-53.6 months; and only a few studies reported the safety profiles of perioperative immunotherapies.ConclusionOur evidence mapping systematically summarized the results of all clinical trials and studies that examined ICIs as perioperative treatments for NSCLC. The results indicated more studies that evaluate long-term patient outcomes are needed to provide a stronger foundation for the use of these treatments

    ABSCISIC ACID-INSENSITIVE 5-KIP-RELATED PROTEIN 1-SHOOT MERISTEMLESS modulates reproductive development of Arabidopsis

    Get PDF
    Soil (or plant) water deficit accelerates plant reproduction. However, the underpinning molecular mechanisms remain unknown. By modulating cell division/number, ABSCISIC ACID-INSENSITIVE 5 (ABI5), a key bZIP (basic (region) leucine zippers) transcription factor, regulates both seed development and abiotic stress responses. The KIP-RELATED PROTEIN (KRP) cyclin-dependent kinases (CDKs) play an essential role in controlling cell division, and SHOOT MERISTEMLESS (STM) plays a key role in the specification of flower meristem identity. Here, our findings show that abscisic acid (ABA) signaling and/or metabolism in adjust reproductive outputs (such as rosette leaf number and open flower number) under water-deficient conditions in Arabidopsis (Arabidopsis thaliana) plants. Reproductive outputs increased under water-sufficient conditions but decreased under water-deficient conditions in the ABA signaling/metabolism mutants abscisic acid2-1 (aba2-1), aba2-11, abscisic acid insensitive3-1 (abi3-1), abi4-1, abi5-7, and abi5-8. Further, under water-deficient conditions, ABA induced-ABI5 directly bound to the promoter of KRP1, which encodes a CDK that plays an essential role in controlling cell division, and this binding subsequently activated KRP1 expression. In turn, KRP1 physically interacted with STM, which functions in the specification of flower meristem identity, promoting STM degradation. We further demonstrate that reproductive outputs are adjusted by the ABI5–KRP1–STM molecular module under water-deficient conditions. Together, our findings reveal the molecular mechanism by which ABA signaling and/or metabolism regulate reproductive development under water-deficient conditions. These findings provide insights that may help guide crop yield improvement under water deficiency
    • …
    corecore