740 research outputs found

    Mask-guided Style Transfer Network for Purifying Real Images

    Full text link
    Recently, the progress of learning-by-synthesis has proposed a training model for synthetic images, which can effectively reduce the cost of human and material resources. However, due to the different distribution of synthetic images compared with real images, the desired performance cannot be achieved. To solve this problem, the previous method learned a model to improve the realism of the synthetic images. Different from the previous methods, this paper try to purify real image by extracting discriminative and robust features to convert outdoor real images to indoor synthetic images. In this paper, we first introduce the segmentation masks to construct RGB-mask pairs as inputs, then we design a mask-guided style transfer network to learn style features separately from the attention and bkgd(background) regions and learn content features from full and attention region. Moreover, we propose a novel region-level task-guided loss to restrain the features learnt from style and content. Experiments were performed using mixed studies (qualitative and quantitative) methods to demonstrate the possibility of purifying real images in complex directions. We evaluate the proposed method on various public datasets, including LPW, COCO and MPIIGaze. Experimental results show that the proposed method is effective and achieves the state-of-the-art results.Comment: arXiv admin note: substantial text overlap with arXiv:1903.0582

    Stability of fractionally dissipative 2D quasi-geostrophic equation with infinite delay

    Get PDF
    In this paper, fractionally dissipative 2D quasi-geostrophic equations with an external force containing infinite delay is considered in the space Hs with s ≥ 2 − 2α and α ∈ ( 1 2 , 1). First, we investigate the existence and regularity of solutions by Galerkin approximation and the energy method. The continuity of solutions with respect to initial data and the uniqueness of so lutions are also established. Then we prove the existence and uniqueness of a stationary solution by the Lax-Milgram theorem and the Schauder fixed point theorem. Using the classical Lyapunov method, the construction method of Lyapunov functionals and the Razumikhin-Lyapunov technique, we analyze the local stability of stationary solutions. Finally, the polynomial stability of stationary solutions is verified in a particular case of unbounded variable delay

    The effect of the ion beam energy on the properties of indium tin oxide thin films prepared by ion beam assisted deposition

    Get PDF
    Indium tin oxide (ITO) thin films have been deposited onto polycarbonate substrates by ion beam assisted deposition technique at room temperature. The structural, optical and electrical properties of the films have been characterized by X-ray diffraction, atomic force microscopy, optical transmittance, ellipsometric and Hall effect measurements. The effect of the ion beam energy on the properties of the films has been studied. The optical parameters have been obtained by fitting the ellipsometric spectra. It has been found that high quality ITO film (low electrical resistivity and high optical transmittance) can be obtained at low ion beam energy. In addition, the ITO film prepared at low ion beam energy gives a high reflectance in IR region which is useful for some electromagnetic wave shielding applications.Fundação Calouste Gulbenkia

    Ultra-low-threshold InGaN/GaN quantum dot micro-ring lasers.

    No full text
    In this work, we demonstrate ultra-low-threshold, optically pumped, room-temperature lasing in GaN microdisk and micro-ring cavities containing InGaN quantum dots and fragmented quantum wells, with the lowest measured threshold at a record low of 6.2  μJ/cm2. When pump volume decreases, we observe a systematic decrease in the lasing threshold of micro-rings. The photon loss rate, γ, increases with increasing inner ring diameter, leading to a systematic decrease in the post-threshold slope efficiency, while the quality factor of the lasing mode remains largely unchanged. A careful analysis using finite-difference time-domain simulations attributes the increased γ to the loss of photons from lower-quality higher-order modes during amplified spontaneous emission

    Design and control of a sit-to-stand assistive device based on analysis of kinematics and dynamics

    Get PDF
    Sit-to-stand is a common activity in daily life. It is difficult for the elderly and patients with lower limb disorders to complete this motion due to limb pain, muscle weakness, partial loss of motor control function, and physical defects in joints. An STS assistive device is a piece of automated medical equipment that can facilitate rehabilitation training for patients with lower limb disorders and improve their lower limb function. In this paper, we introduce a 3-DOF series type STS assistive device. First, we selected 26 healthy adults to carry out an STS transfer experiment, and we obtained the trajectory and velocity of each joint and the law of plantar pressure during STS motion. Second, based on the above kinematics and dynamics law, a 3-DOF series mechanism was designed. Through forward and inverse kinematics analysis, the relationship between the end-effector and the linear actuator was established. The trajectory planning of the end-effector was carried out according to the natural STS transfer trajectory, and the law of the linear actuator was obtained. The trajectory planning was verified by ADAMS. Finally, the Arduino controller was used to build the control system of the STS assistive device, and the prototype experiment was carried out
    corecore