76 research outputs found

    Review of recent progress in unassisted photoelectrochemical water splitting: from material modification to configuration design

    Get PDF
    Photoelectrochemical (PEC) energy conversion systems have been considered as a highly potential strategy for clean solar fuel production, simultaneously addressing the energy and environment challenges we are facing. Tremendous research efforts have been made to design and develop feasible unassisted PEC systems that can efficiently split water into hydrogen (H2) and oxygen with only the energy input of sunlight. A fundamental understanding of the concepts involved in PEC water splitting and energy conversion efficiency enhancement for solar fuel production is important for better system design. This review gives a concise overview of the unassisted PEC devices with some state-of-the-art progress toward efficient PEC devices for future sustainable solar energy utilization

    Beyond Myopia: Learning from Positive and Unlabeled Data through Holistic Predictive Trends

    Full text link
    Learning binary classifiers from positive and unlabeled data (PUL) is vital in many real-world applications, especially when verifying negative examples is difficult. Despite the impressive empirical performance of recent PUL methods, challenges like accumulated errors and increased estimation bias persist due to the absence of negative labels. In this paper, we unveil an intriguing yet long-overlooked observation in PUL: \textit{resampling the positive data in each training iteration to ensure a balanced distribution between positive and unlabeled examples results in strong early-stage performance. Furthermore, predictive trends for positive and negative classes display distinctly different patterns.} Specifically, the scores (output probability) of unlabeled negative examples consistently decrease, while those of unlabeled positive examples show largely chaotic trends. Instead of focusing on classification within individual time frames, we innovatively adopt a holistic approach, interpreting the scores of each example as a temporal point process (TPP). This reformulates the core problem of PUL as recognizing trends in these scores. We then propose a novel TPP-inspired measure for trend detection and prove its asymptotic unbiasedness in predicting changes. Notably, our method accomplishes PUL without requiring additional parameter tuning or prior assumptions, offering an alternative perspective for tackling this problem. Extensive experiments verify the superiority of our method, particularly in a highly imbalanced real-world setting, where it achieves improvements of up to 11.3%11.3\% in key metrics. The code is available at \href{https://github.com/wxr99/HolisticPU}{https://github.com/wxr99/HolisticPU}.Comment: 25 page

    Processable graphene oxide-embedded titanate nanofiber membranes with improved filtration performance

    Get PDF
    Graphene oxide (GO)-embedded titanate nanofiber (TNF) membranes with improved filtration performance are prepared successfully by a two-step method including electrostatic assembly of GO and TNFs into hybrids and subsequent processing of them into membranes by vacuum filtration. The embedded contents of GO sheets in films and thickness of as-assembled films can be adjusted facilely, endowing such composite films with good processability. Owing to the skilful introduction of GO sheets, the pore and/or channel structures in these hybrid membranes are modified. By treating different dye solutions (Direct Yellow and Direct Red), the filtration properties of these membranes show that the introduction of certain amount of GO sheets efficiently improve the separation performance of the membranes. Interestingly, these GO-embedded TNF membranes also display superior selective separation performance on filtrating the mixture solutions of such two dyes, making these hierarchical membranes more flexible and versatile in water treatment areas

    Multiple resolution seismic attenuation imaging at Mt. Vesuvius

    Get PDF
    A three-dimensional S wave attenuation tomography of Mt. Vesuvius has been ob- tained with multiple measurements of coda-normalized S-wave spectra of local small magnitude earthquakes. We used 6609 waveforms, relative to 826 volcano-tectonic earthquakes, located close to the crater axis in a depth range between 1 and 4 km (below the sea level), recorded at seven 3-component digital seismic stations. We adopted a two-point ray-tracing; rays were traced in an high resolution 3-D velocity model. The spatial resolution achieved in the attenuation tomography is comparable with that of the velocity tomography (we resolve 300 m side cubic cells). We statisti- cally tested that the results are almost independent from the radiation pattern. We also applied an improvement of the ordinary spectral-slope method to both P- and S-waves, assuming that the di¤erences between the theoretical and the experimental high frequency spectral-slope are only due to the attenuation e¤ects.We could check the coda-normalization method comparing the S attenuation image obtained with the two methods. The images were obtained with a multiple resolution approach. Results show the general coincidence of low attenuation with high velocity zones. The joint interpretation of velocity and attenuation images allows us to interpret the low attenuation zone intruding toward the surface until a depth of 500 meters below the sea level as related to the residual part of solidi ed magma from the last eruption. In the depth range between -700 and -2300 meters above sea level, the images are consistent with the presence of multiple acquifer layers. No evidence of magma patches greater than the minimum cell dimension (300m) has been found. A shallow P wave attenuation anomaly (beneath the southern ank of the volcano) is consitent with the presence of gas saturated rocks. The zone characterized by the maximum seismic energy release cohincides with a high attenuation and low velocity volume, interpreted as a cracked medium

    Recent progress on visible light responsive heterojunctions for photocatalytic applications

    Get PDF
    Photocatalysis has attracted much attention in recent years due to its potential in solving energy and environmental issues. Even though numerous achievements have been made, the photocatalytic systems developed to date are still far from practical applications due to the low efficiency and poor durability. Efficient light absorption and charge separation are two of the key factors for the exploration of high performance photocatalytic systems, which is generally difficult to be obtained in a single photocatalyst. The combination of various materials to form heterojunctions provides an effective way to better harvest solar energy and to facilitate charge separation and transfer, thus enhancing the photocatalytic activity and stability. This review concisely summarizes the recent development of visible light responsive heterojunctions, including the preparation and performances of semiconductor/semiconductor junctions, semiconductor/cocatalyst junctions, semiconductor/metal junctions, semiconductor/non-metal junctions, and surface heterojunctions, and their mechanism for enhanced light harvesting and charge separation/transfer

    Opposite effects of single-dose and multidose administration of the ethanol extract of danshen on

    Get PDF
    The aim of this study was to investigate the effect of single-and multidose administration of the ethanol extract of danshen on in vivo CYP3A activity in healthy volunteers. A sequential, open-label, and three-period pharmacokinetic interaction study design was used based on 12 healthy male individuals. The plasma concentrations of midazolam and its metabolite 1-hydroxymidazolam were measured. Treatment with single dose of the extract caused the mean max of midazolam to increase by 87% compared with control. After 10 days of the danshen extract intake, the mean AUC 0-12 , max , and 1/2 of midazolam were decreased by 79.9%, 66.6%, and 43.8%, respectively. The mean clearance of midazolam was increased by 501.6% compared with control. The in vitro study showed that dihydrotanshinone I in the extract could inhibit CYP3A, while tanshinone IIA and cryptotanshinone could induce CYP3A. In conclusion, a single-dose administration of the danshen extract can inhibit intestinal CYP3A, but multidose administration can induce intestinal and hepatic CYP3A
    corecore