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Graphical abstract 

Processable graphene oxide-embedded titanate nanofiber membranes with improved 

filtration performance  

 

 

 

 

Highlights 

 

 Graphene oxide embedded titanate fiber films with good processability are prepared 

 The content of graphene oxide sheets and thickness of films can be adjusted easily 

 Embedded graphene oxide sheets improve the filtration property of fibrous films  

 Such composite films also exhibit enhanced selectivity performance.  

 

 

Abstract  
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Graphene oxide (GO)-embedded titanate nanofiber (TNF) membranes with improved 

filtration performance are prepared successfully by a two-step method including 

electrostatic assembly of GO and TNFs into hybrids and subsequent processing of them 

into membranes by vacuum filtration. The embedded contents of GO sheets in films and 

thickness of as-assembled films can be adjusted facilely, endowing such composite films 

with good processability. Owing to the skilful introduction of GO sheets, the pore and/or 

channel structures in these hybrid membranes are modified. By treating different dye 

solutions (Direct Yellow and Direct Red), the filtration properties of these membranes 

show that the introduction of certain amount of GO sheets efficiently improve the 

separation performance of the membranes. Interestingly, these GO-embedded TNF 

membranes also display superior selective separation performance on filtrating the mixture 

solutions of such two dyes, making these hierarchical membranes more flexible and 

versatile in water treatment areas. 

 

 

Keywords: Inorganic fibrous membranes, graphene oxide, processability, selectivity, water 

treatment 

 

 

 

1. Introduction  
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Inorganic fibrous membranes have been considered as promising separation membranes 

due to their large surface area, high chemical and thermal stability, large porosity and high 

permeability, etc [1-4]. Despite of these advantages, the interconnected and open channels 

in fiber-based films are relatively large [5-8], which makes such membranes suffer a lot 

from poor retention efficiency and selectivity, limiting their potential applications in 

separation fields, especially in organic wastewater purification [9-12]. Generally, the 

permeation properties of fiber membranes can be improved by surface modification (for 

example, adsorption properties) [13, 14] and the structural adjustment of the 

pores/channels [15-17]. In addition to enhancing the adsorption capacity, modification of 

pore/channel structures could be an alternative and effective strategy to improve the 

retention ability of these films [18, 19]. Unfortunately, restricted by the fiber structures and 

the disorder assembling process of these fibers, the size of the as-formed pores (channels) 

in fibrous membranes are still hard to be well controlled. Thus, how to construct desirable 

pore/channel structures that could appropriately improve the separation performance of 

fibrous membranes is still a big challenge.  

Graphene-based sheets have recently been found to be promising building blocks in film 

areas owing to their unique two-dimensional structure and properties [20-23]. Apart from 

used as the main components in films (sometime as surface coating membranes) [24-28], 

these carbon sheets have also been considered as excellent additives to improve certain 

properties of the films, for example conductivity, film-formation, antifouling and so on 

[29-31]. Thus, if these carbon sheets are successfully added into inorganic fibre filtration 

membranes, may the channels of membranes be modified, and their separation 

performance be improved [32-35]? As Scheme shown in Fig. 1, when carbon sheets are 
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introduced into fiber membranes, some of the interconnected and open channels in the as-

obtained membranes may be segmented and cut off during the film assembly process, 

which would change the structure of these channels. Meanwhile, these embedded two-

dimensional sheets could also increase the barrier area, which will delay substance 

permeation through the fiber membranes, improving the interception ability of these films. 

Accordingly, addition of graphene-based sheets could cause structural changes of these 

pores or channels in these inorganic fibrous films, which may affect the films’ permeability 

and selectivity performance, resulting in improved filtration separation properties of these 

fibrous membranes. 

Herein, we demonstrate a facile method to fabricate graphene oxide-embedded titanate 

(H2Ti2O7) nanofiber (TNF) membranes with improved filtration separation properties. GO-

embedded TNFs membranes are prepared by a two-step method including preparation of 

GO-H2Ti2O7 nanofiber (TNF-GO) composites and assembling of them into membranes by 

simple vacuum filtration. The content of GO sheets and the thickness of films can also be 

adjusted facilely by our method. The separation performances of these GO embedded 

nanofibers membranes are investigated by filter organic dyes (Direct Yellow 50, Direct 

Red 80, or their mixed solutions). The results show that embedding GO sheets into these 

fiber membranes can efficiently improve the filtration separation performance of these 

TNF-GO membranes, which expands the potential applications of these hybrid filtration 

membranes in the film separation areas. 

2. Experimental Section  

2.1 Preparation of GO, TNF and TNF-GO composites  
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GO sheets were prepared from purified natural graphite (Alfa-Aesar Co.) according to 

the method reported by Hummers and Offeman [36]. Then the as-obtained GO dispersion 

(1 mg/ml) was sonicated and centrifuged to remove un-exfoliated and larger sheets. TNF 

are prepared using modified hydrothermal method according to the previous reports [34, 

37]. First, tetra-n-butyl titanate (0.85 ml) was added in KOH solution (10 mol·L-1, 40 ml), 

which was stirred for 30 min to ensure a complete blending of the reactants. Then, the 

mixture was transferred to 50 mL Teflon-lined autoclave and was conducted at 200 oC for 

24 h. The product was collected after the hydrothermal reaction and washed using HCl (0.2 

M) and deionized water to remove any impurities.  

The as-obtained GO sheets and TNF are used as precursors to prepare TNF-GO 

composites. In a typical experiment, GO dispersion (0.25mL, 1 mg·mL-1) was added in 

titanate nanofibers suspension (50 mg of TNF dispersed in 50 mL of water) and the pH 

value was adjusted to around 6. Then, the as-formed slurry was stirred for 12 h at room 

temperature. Finally, the TNF-GO composites were centrifuged and washed with distilled 

water several times. Different usages of GO in TNF-GO composites were also prepared 

through the same process, and these samples are labelled as TNF-GOx% (x %, mass ratios 

of original added GO sheets).  

2.2 Film assembling and filtration test 

Before membrane assembling, TNF and TNF-GO x% composites (50 mg) were 

redispersed in HCl solution (0.2 M, 50 mL) for 2 days to form relatively stable suspensions. 

Then, TNF and TNF-GO membranes were prepared by vacuum filtration of the as-prepared 

suspensions through Poly(ether sulfones) filter membranes (47 mm in diameter, 0.2 μm 

pore size, Tianjin Jinteng). Distilled water was poured to wash these films. The filtration 

javascript:void(0);
javascript:void(0);
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properties of our membranes were evaluated by filtering different dye solutions, including 

Direct Yellow 50 (45 ppm), Direct Red 80 (35 ppm), and their mixture with the same 

concentrations. After washed by distilled water, 100 mL of these dye solution was poured 

on the top of the as-formed membranes, which was then subjected to continuous vacuum 

suction for 30 min (with a pressure of around 1 bar) to allow the solution to flow through 

the membranes. The volume of filtrate was recorded to calculate of flux for filtration 

membranes. The resultant filtrate was examined by ultraviolet-visible (UV-Vis) 

spectroscopy to calculate the relative concentration of filtrate ((Cfiltrate/Cfeed) × 100 %) and 

retention rate ((1-Cfiltrate/Cfeed) × 100 %). Furthermore, the adsorption capacities of TNF 

and TNF-GO films were obtained by stirring the as-prepared films in the dye solution for 

30 min. After centrifugation, the solution was analysed by UV-Vis spectroscopy ((1-

Cadsorption/Cfeed) × 100 %). 

2.3 Characterization 

Powder X-ray diffraction (XRD) analyses were performed on a Bruker D8 Advance 

diffractometer with Cu Kα radiation. The diffraction data were recorded for 2θ angles 

between 5o and 80o. Thermogravimetric (TG) analyses were performed on NETZSCH 

thermogravimetric analyser from 15 to 800 oC at a heating rate of 5 oC /min in air flow. 

Morphology analyses of samples were carried out on JEOL 2100 Transmission Electron 

Microscope (TEM) and Hitachi S8010 Field Emission Scanning Electron Microscope 

(FESEM). The zeta-potential of samples and size of dye molecular was tested by Malvern 

Zetasizer Nano-ZS particle analyser. The UV-vis absorption spectra were carried out by 

Varian Cary 50 spectrophotometer. Specific surface areas and pore distribution were 
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calculated from nitrogen adsorption and desorption isotherms conducted at 77 K in an 

ASAP 2020 M analyser according to Brunauer-Emmett-Teller (BET) model. 

3. Results and Discussion 

3.1 Materials analysis 

Fibers are usually utilized as starting materials to prepare bulk membranes [33, 38, 39]. 

To introduce GO sheets as effective additive in TNFs, we first prepared homogeneously 

TNF-GOx% composites before processing them into membranes. It is found that the as-

prepared TNFs carry positive charges under neutral and acidic condition, while GO sheets 

are usually negatively (the Zeta-potential values of TNF and GO suspension at pH 6 are 

about +29.8 and –30.4 mV, respectively) [40]. So TNF-GOx% composites can be easily 

prepared by electrostatic assembly of two species with opposite chargers. Fig. 2(a) and (b) 

display typical TEM images of TNF control samples and TNF-GO0.5% composites, 

respectively (Content of GO is confirmed by TGA results, Fig. S1, Supporting 

Information). From these figures, the typical fiber structure is clearly found, and the inset 

HRTEM image in Fig. 2(a) and XRD patterns (Fig. S2) indicate that these fibers possess 

titanate crystal structure. After electrostatic adsorption, TNFs are combined successfully 

with these carbon sheets, forming GO-involved TNF composites (as arrow shown in Fig. 

2(b)) [41-43].  

  

Generally, most of these inorganic nanofibers are in the form of powders or as 

precipitates from the solution, which are not feasible for these fibers to be processed into 

membranes by the post-synthesis assembly techniques. Dispersion assisting agents, 

especially polymer surfactants, are usually adopted to make inorganic fibers disperse more 

uniformly in aqueous solution [9, 10]. But these additives normally bring in some side-
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effects, which would affect the inherent properties of these original nanofibers and the 

resulted fibrous membranes. Interestingly, in our cases, both TNF and TNF-GOx% slurries 

can form relatively stable suspensions in acid solution (0.2 M HCl) without the addition of 

any dispersion agents, which remain for several hours without obvious precipitates (Insets 

in Fig. 3). Such phenomena are probably due to the strong electrostatic repulsion of these 

TNF-based fibers suspensions. As the insets shown in Fig. 3 (a) and (b), the Zeta-potential 

of TNF and TNF-GO0.5% suspensions are about +42 and +33.6 mv, respectively, which 

make them disperse well in acid solution. Owing to such stability, these fiber materials 

show excellent membrane-formation properties, which can be readily assembled into film-

like materials by vacuum filtration. Fig. 3 show the typical digital photos of TNF and TNF-

GO0.5% membranes (the usage of these fibers is about 50 mg.). It is clear that the assembled 

TNF films with certain transparency are very uniform, without using any surfactants (Fig. 

3(a)) [33, 34]. By comparison, these TNF-GO0.5% membranes become hazy with darker 

colour after introduction of these carbon sheets, but still look very homogeneous (Fig. S3). 

Furthermore, the disappearance of typical XRD patterns of GO flakes indicates that GO 

sheets are almost exfoliated in TNF membranes (Fig. S2). 

The morphology of these films are analysed by FESEM images. Fig. 4 show the typical 

FESEM images of pure TNF and TNF-GO0.5% membranes. It can be seen that TNF films 

are assembled by the inter-penetration and overlapping of these nanofibers [1-3], and the 

thickness of 50 mg TNF films is about 35 m [33, 34]. After embedded with GO sheets, 

the surface structure of TNF-GO0.5% membranes are similar to that of pristine TNF ones 

(Fig. 4(c)), but GO sheets can be clearly found in these TNF-GO0.5% composite films (Fig. 

4(d). Moreover, the presence of these carbon sheets in cross-section (as arrow shown in 
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Fig. 4(e)) further confirms that these GO sheets are indeed embedded in the films. Due to 

the introduction of carbon sheets, TNF-GO0.5% films become slightly thicker than that of 

TNF ones, which is about 38 m (Fig. 4(f)). 

 

Actually, when the contents of GO are further increased from 0.5 to 2 wt%, the surface 

of TNF-GO membranes gradually become coarse, and the films are inclined to crack when 

the usage of GO is above 2 wt %. Such phenomenon may be due to the facts that excess 

addition of GO sheets could aggravate the local aggregation of these fibers in the resulted 

membranes [33], which can cause the hierarchical fiber films non-uniform during the film-

forming process, leading to the formation of cracks (Fig. S4).  

In addition to the controllable contents of GO sheets in films, the thickness of the as-

obtained membranes in our system can also be adjusted by varying the dosage of composite 

fibers suspension. For example, when the dosage of fibers are about 30 (80) mg, the 

thickness of TNF- GO0.5% membranes is around 23 (60) m (Fig. S5). Though the thickness 

control is not very precise by filtration, such method is rather a simple and superior one for 

large-scale production of fiber membranes with adjustable thickness [44, 45]. Recently, 

Cao and co-authors have shown that graphene-involved titanate fiber membranes can form 

directly after one-step hydrothermal reaction [33, 34].  But, the as-formed composites 

tend to form monolith-like film materials, which restricts their convenient processing. In 

contrast, the superior processability with controllable content of carbon sheets and 

thickness of films in our work enable us to prepare membranes in a more flexible and 

adjustable fashion which are important for applications of these TNF-GO films.  
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Nitrogen adsorption-desorption analysis was conducted to investigate the specific 

surface areas and pore structure of the films (Fig. 5 and Fig. S6). Usually, the addition of 

graphene-based sheets would affect the specific surface area of certain materials. But in 

our samples, as the content of these sheets are very small, the specific surface area of TNF-

GO0.5% films (285 m2·g-1) is comparable to that of pure TNF ones (282 m2·g-1). From Fig. 

5A(a), it is clear that the control TNF membranes exhibit a type H3 hysteresis loop, 

indicating the presence of mesopore structure. And the calculated average pore size of TNF 

membranes is about 15.3 nm (Fig. 5B(a)). After integrated with GO sheets, TNF-GOx% 

films display similar mesopore structures, but with small decrease in pore size (Fig. 5 and 

Fig. S6, 12.5 nm). It is known that, the pores in these fiber membranes are derived from 

the overlapping and inter-penetration of fibres. So when these GO sheets are inserted, some 

of these original mesh-like pores may be segmented and/or blocked by these two-

dimensional barriers (Fig. 1(b)) [46, 47], resulting in size decrease in these pores. When 

excess GO sheets were used (from 1 to 2 wt%), the average size of pores recovered slightly, 

which may be caused by the formation of cracks in films (Fig. S4).   

3.2 Filtration performance 

As separation membranes, small variation of pores/channels could cause changes in their 

separation and selectivity performance. Before carrying out filtration separation 

experiments, we simply tested the permeability of the TNF-GOx% membranes by filtering 

pure water, and the results are listed in Table 1, Entry 1. It is found that when no GO sheets 

added, the water flux of 50 mg TNF membranes is about 102.9 L∙h∙m-2. Noticeably, the 

pure water flux through these TNF-GO membranes (50 mg) decreased. In particular, when 

the content of GO is about 0.5 wt%, the TNF-GO0.5% membranes display the lowest flux, 
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which is about 69.6 L∙h∙m-2. So, addition of GO sheets can bring about certain influences 

on the permeation performance of these GO-embedded TNF membranes.  

Analogously, it is assumed that the separation performance of these TNF-GOx% 

membranes could be different from that of the pristine TNF ones. We utilized Direct 

Yellow 50 (DY) solutions as original feeds to evaluate the filtration performances of these 

films, and the results are shown in Fig. 6 and Table 1 (Entry 2 to 4). Fig. 6A displays UV-

Vis absorbance and photos of filtrates obtained by vacuum filtrating DY dye solutions over 

our films. It can be intuitively seen that the filtrates obtained by using TNF-GOx% as 

filtration membranes are clearer than that of TNF ones (Fig. 6A), suggesting that the use 

of GO sheets can improve the filtration separation abilities of TNF membranes towards 

DY dye. To further investigate the effects of these embedded GO sheets, we also calculate 

the adsorption capacities and retention rates of our films (Fig. 6B and Table 1)[48, 49]. 

Generally, the added GO sheets could increase the adsorption capacities of dye molecules 

by static and/or conjugation adsorption. However, the usages of GO are much low in our 

samples, and DY molecular are negatively charged in solution (about -33 mV), the 

adsorption capacity of TNF-GO films don't increase obviously. For example, when we 

mixed these film with 100 mL feed solution [50], the adsorption amount of TNF-GO0.5% 

just increased from 6.3% of control TNF to 8.9% towards DY solutions. Noticeably, the 

whole retention rates of TNF-GO films increase remarkably. In particular, the retention 

rate of TNF-GO0.5% membrane reaches to 93.1%, which is much higher than that of TNF 

membranes (55.8%). Accordingly, it is assumed that apart from increasing adsorption 

capacity, these embedded GO sheets primarily improve the interception abilities of these 

TNF filtration films. 
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We attributed such improvement of filtration performance to the variations of 

pore/channel structures of these GO-embedded TNF membranes (Fig. 1 and 7). As 

discussed above, these embedded GO sheets slightly reduce the average size of pores 

(Fig.5B and Fig. S6), which can narrow these interconnected channels in these GO-

embedded films. And these inserted carbon sheets could seal up some channels (Fig. 7(b)). 

Thus, these narrowed and blocked channels are inclined to intercept more dye molecules 

(Fig. 7(b)). On the other hand, these GO sheets can increase the barrier area, which will 

improve the collision probability between pollutants and the membrane, and slow down 

the permeation rate of dye molecules through the films (Fig. 7(b)). Meanwhile, these two-

dimensional sheets can also form local plane-liked channels (as the circular ring shown in 

Fig. 7(b)), which can further prolong the transferring route of these dye molecules. As 

results, these embedded carbon sheets can effectively improve the retention rate of these 

TNF-GO membranes towards dye molecules. 

   

It should be noted that only certain amount of GO will facilitate the filtration process 

whereas further increasing the content of GO sheets (from 1 to 2 %) will not improve the 

retention rate, in reverse lead to a deterioration in their separation performance (Fig. 6 and 

Table 1, Entry 3). As discussed above, addition of excessive GO sheets may lead to the 

formation of cracks during the film-forming process (Fig. S4). Thus, dye molecules can 

permeate through these large voids and flow down with filtrates, which thereby reduces 

the retention rates of these TNF-GOx% films. And probably due to the same reason, the 

fluxes (Table1, Entry 1 and 2) of these TNF membranes with excess GO sheets also exhibit 

similar variation tendency. 
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As known, the thickness of films has certain influence on the permeation performance 

[51, 52], so we chose TNF-GO0.5% composites as model to further study the effects of 

membranes thickness on the filtration properties. Since the thickness of TNF-GO films can 

be controlled facilely just through using different amount of TNF-GO composites, three 

dosages of composites (30, 50 and 80 mg) are investigated and the corresponding TNF 

membranes are still used as control samples. From Fig. 8A, it can be seen that the retention 

rates of TNF and TNF-GO0.5% membranes towards DY molecules are improved along with 

the increase in dosages of fibers, which may be caused by the increased adsorption 

capacities of films and the prolonged twisty channels in the films. But, no matter how the 

dosage of film adjusted, GO-embedded TNF membranes always display better retention 

rates than that of TNF ones. Usually, the thicker the films, the higher retention ability they 

possess, but worse in permeability. Thus, given the process cost, it is expected to obtain 

thinner membranes in the case of similar separation properties. It is found that, in our 

system, only 50 mg TNF-GO0.5% membranes can achieve similar separation ability with 

that of 80 mg TNF films. Meanwhile, the flux of 50 mg TNF-GO0.5% membranes also 

increase to 63.1 L∙h∙m-2, compared with that of 80 mg pure TNF ones (56.8 L∙h∙m-2), 

indicating that the relatively thin TNF-GO0.5% membranes possess higher treatment 

capacity of wastewater in the case of similar retention rates. 

Furthermore, we also found that these TNF-GO membranes display excellent separation 

performance on the other type of dyes. We use 30 mg films to filtrate direct red 80 solution 

(DR, 35 ppm, 100 mL), and the results indeed shown that GO-embedded TNF membranes 

exhibit enhanced filtration performance towards DR solution. Similarly, TNF-GO0.5% 
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membranes possess the highest retention rate (94.1%), which is about 1.4 times as that of 

control TNF ones. Accordingly, it is feasible that the filtration performance of these fiber 

membranes can be improved effectively by embedded with these two-dimensional sheets. 

And the controllable content of graphene oxide sheets and thickness of the films make them 

more flexible and versatile in water purification areas.  

Apart from the enhanced retention performance, we also found that our films possess 

certain selectivity separation ability. As indicated in Fig.8, 30 mg TNF-GO0.5% membranes 

can reject most DR dye molecules (Fig. 8B), but show poor retention rate on DY dye (Fig. 

8A), so what is the result if using 30 mg films to filtrate the mixture of such two dyes? We 

preliminary test the selectively separation performance of these 30 mg TNF-GOx% films 

on the mixture dye solution containing DY and DR dyes (100 mL with 45 ppm of DY and 

35 ppm of DR), and Fig. 9 shows the relative concentration ((Cfiltrate/Cfeed) × 100 %) of the 

two dyes in filtrates after vacuum filtration. As indicated in Fig. 9, when no GO sheets 

added, both of DY and DR dyes can permeate the pure TNF membranes, and the relative 

concentrations of DY and DR dyes in filtrates are about 95.1 and 35.7%, respectively. After 

embedded with GO sheets, most of DY dye molecules in the mixture can also permeate 

these TNF-GOx% membranes easily, and the penetration rates of DY dye remain around 

90%, which indicates that these embedded GO sheets have no significant effects on the 

selective penetration of DY dye in mixture system. Interestingly, the penetration rates of 

DR dye are influenced obviously by these added GO sheets. Particularly, the relative 

concentration of DR in filtrate through TNF-GO0.5% membranes is only about 6.2%, which 

is much lower than that of using pure TNF samples (35.7%), suggesting that DR molecules 

in mixture can be selectively rejected by TNF-GO0.5% membranes. 
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It is noteworthy that the conditions are more complex in mixture dye solution than that 

of single ones (such as concentration, adsorption properties, molecular weight, etc.), the 

filtration performance of TNF-GO membranes on such two dyes in mixture system are 

different from that of individual dye solution, which will be investigated in the future. 

Nevertheless, our results demonstrate that embedding with GO sheets can not only improve 

the filtration performance of TNF membranes, but also endows these films with exciting 

selectivity separation properties towards multi-component solutions, which could be 

utilized on some emerging applications such as petroleum industries, pharmaceuticals, 

food industries etc., opening up enormous opportunities for the use of graphene-involved 

fiber membranes in separation areas.  

4. Conclusion 

In summary, GO-embedded TNF membranes with improved filtration performance have 

been successfully obtained by a two-step method. First, TNF-GOx% composites with 

controllable contents of GO sheets were prepared by electrostatic assembly from stable 

suspension. Then, TNF-GOx% membranes were obtained by vacuum filtration of these 

suspensions. The thickness of these fiber membranes can also be facilely adjusted by 

changing the dosage of these stable fiber suspensions. The filtration properties of these 

TNF-GO membranes are evaluated by filtrating DY and DR dye solution. Since the 

introduction of these carbon sheets can modified the pore/channel structure of the original 

TNF films, the filtration performance of these GO-embedded TNF membranes is improved 

obviously. When the embedded amount of GO sheets is about 0.5 wt%, the composite 

membranes display the optimal separation properties towards these dyes. Furthermore, 

these TNF-GO membranes display superior selectivity separation properties towards the 
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mixture solutions of DY and DR dye, qualifying them as multi-functional membrane for 

separation applications.  

It is assumed that such strategy that embedding graphene-based sheets into nanofiber 

membranes can be expanded to optimize the filtration properties of other inorganic fiber 

membranes, broadening the potential applications of these graphene-embedded inorganic 

fiber membranes in separation areas in the future. 
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Fig. 1. Scheme of (a) pure fiber membranes and (b) GO-embedded fiber membranes. 

     

Fig. 2. TEM images of (a) TNF and (b) TNF-GO0.5% membranes. Inset in (a) is the HRTEM 

image of titanate fibers. 

        

Fig. 3. Digital photos of (a) TNF and (b) TNF-GO0.5% membranes, and the dosage of fibers 

is about 50 mg. Insets are photos of corresponding suspensions of fiber materials (1.0 

mg/mL).  
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Fig. 4. FESEM images of samples: (a) and (b) TNF membranes, (c) and (d) TNF-GO0.5% 

membranes. 
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Fig. 5. (A) Nitrogen adsorption-desorption isotherms and (B) pore size distribution curve 

of (a) TNF and (b) TNF-GO0.5% membranes.  

  

Fig. 6. (A) UV-Vis absorbance and photos of filtrates obtained by filtration of DY solutions 

for 30 min (45 ppm, 100 ml) over 50 mg TNF and TNF-GO membranes; (B) Bar plot 

showing the retention rates and adsorption capacities of these membranes. Retention rate 

= (1 – C filtrate/Cfeed) × 100 %, and adsorption capacity = (1 – Cadsorption /Cfeed) × 100 %. 
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Fig. 7. Schematic view for possible percolation through the fiber membranes (a) TNF and 

(b) TNF-GO filtration membranes. 

   

Fig. 8. (A) The retention rates and adsorption capacities of DY solution (45 ppm, 100 mL) 

using different usage of TNF and TNF-GO0.5% membranes. (B) The retention rates and 

adsorption capacities of DR solution (35 ppm, 100 mL) using 30 mg membranes with 

different usage of GO sheets.  

 

Fig. 9. Concentration of DY and DR dyes in filtrates using 30 mg of membranes with 

different contents of GO sheets. Relative concentration = (Cfiltrate/Cfeed) × 100 %. 
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Table 1. Flux, retention rate and adsorption parameters obtained by using 50 mg 

membranes with different content of GO sheets. The volume of feeds is 100 mL (pure 

water or 45 ppm of DY dye), and the filtration time is 30 min. 

Entry Usage of GO (wt %) 0 0.25 0.5 1.0 2.0 

1 Pure water flux (L∙h∙m-2) 102.9±0.4 89.9±0.4 69.6±0.3 80.6±0.4 86.6±0.4 

2 Dye solution flux (L∙h∙m-2) 95.8±6.7 79.0±3.8 63.1±3.6 76.1±6.9 81.4±8.0 

3 Retention rate (%) 55.8±5.5 77.6±6.2 93.1±1.8 87.5±1.9 77.9±4.6 

4 Adsorption capacity (%) 6.3±0.2 7.8±0.3 8.9±0.3 9.8±0.2 10.4±0.6 

 


