723 research outputs found

    Improved mechanical and electrical properties in electrospun polyimide/multiwalled carbon nanotubes nanofibrous composites

    No full text
    Highly aligned polyimide (PI) and PI/multi-walled carbon nanotubes (PI/MWCNTs) nanofibrous composites by incorporating poly(ethylene oxide) as the dispersing medium were fabricated using electrospinning technique. The morphology, mechanical, and electrical properties of the electrospun nanofibrous composites were investigated. Scanning electron microscope showed that the functionalized MWCNTs (f-MWCNTs) were well dispersed and oriented along the nanofiber axis. Analysis of electrical properties indicated a remarkable improvement on the alternating current conductivity by introduction of the aligned f-MWCNTs. Besides, with addition of 3 vol.% f-MWCNTs, the obvious enhancement of tensile modulus and strength was achieved. Thus, the electrospun PI/MWCNTs nanofibrous composites have great potential applications in multifunctional engineering materials

    Diffraction-Free Bloch Surface Waves

    Full text link
    In this letter, we demonstrate a novel diffraction-free Bloch surface wave (DF-BSW) sustained on all-dielectric multilayers that does not diffract after being passed through three obstacles or across a single mode fiber. It can propagate in a straight line for distances longer than 110 {\mu}m at a wavelength of 633 nm and could be applied as an in-plane optical virtual probe, both in air and in an aqueous environment. The ability to be used in water, its long diffraction-free distance, and its tolerance to multiple obstacles make this DF-BSW ideal for certain applications in areas such as the biological sciences, where many measurements are made on glass surfaces or for which an aqueous environment is required, and for high-speed interconnections between chips, where low loss is necessary. Specifically, the DF-BSW on the dielectric multilayer can be used to develop novel flow cytometry that is based on the surface wave, but not the free space beam, to detect the surface-bound targets

    Anchor3DLane: Learning to Regress 3D Anchors for Monocular 3D Lane Detection

    Full text link
    Monocular 3D lane detection is a challenging task due to its lack of depth information. A popular solution is to first transform the front-viewed (FV) images or features into the bird-eye-view (BEV) space with inverse perspective mapping (IPM) and detect lanes from BEV features. However, the reliance of IPM on flat ground assumption and loss of context information make it inaccurate to restore 3D information from BEV representations. An attempt has been made to get rid of BEV and predict 3D lanes from FV representations directly, while it still underperforms other BEV-based methods given its lack of structured representation for 3D lanes. In this paper, we define 3D lane anchors in the 3D space and propose a BEV-free method named Anchor3DLane to predict 3D lanes directly from FV representations. 3D lane anchors are projected to the FV features to extract their features which contain both good structural and context information to make accurate predictions. In addition, we also develop a global optimization method that makes use of the equal-width property between lanes to reduce the lateral error of predictions. Extensive experiments on three popular 3D lane detection benchmarks show that our Anchor3DLane outperforms previous BEV-based methods and achieves state-of-the-art performances. The code is available at: https://github.com/tusen-ai/Anchor3DLane.Comment: Accepted by CVPR 202

    Planar peristrophic multiplexing metasurfaces

    Get PDF
    As a promising counterpart of two-dimensional metamaterials, metasurfaces enable to arbitrarily control the wavefront of light at subwavelength scale and hold promise for planar holography and applicable multiplexing devices. Nevertheless, the degrees of freedom (DoF) to orthogonally multiplex data have been almost exhausted. Compared with state-of-the-art methods that extensively employ the orthogonal basis such as wavelength, polarization or orbital angular momentum, we propose an unprecedented method of peristrophic multiplexing by combining the spatial frequency orthogonality with the subwavelength detour phase principle. The orthogonal relationship between the spatial frequency of incident light and the locally shifted building blocks of metasurfaces can be regarded as an additional DoF. We experimentally demonstrate the viability of the multiplexed holograms. Moreover, this newly-explored orthogonality is compatible with conventional DoFs. Our findings will contribute to the development of multiplexing metasurfaces and provide a novel solution to nanophotonics, such as large-capacity chip-scale devices and highly integrated communication

    Tag SNP Polymorphism of CCL2 and Its Role in Clinical Tuberculosis in Han Chinese Pediatric Population

    Get PDF
    BACKGROUND: Chemokine (C-C motif) ligand 2 CCL2/MCP-1 is among the key signaling molecules of innate immunity; in particular, it is involved in recruitment of mononuclear and other cells in response to infection, including tuberculosis (TB) and is essential for granuloma formation. METHODOLOGY/PRINCIPAL FINDINGS: We identified a tag SNP for the CCL2/MCP-1 gene (rs4586 C/T). In order to understand whether this SNP may serve to evaluate the contribution of the CCL2 gene to the expression of TB disease, we further analysed distribution of its alleles and genotypes in 301 TB cases versus 338 non-infected controls (all BCG vaccinated) representing a high-risk pediatric population of North China. In the male TB subgroup, the C allele was identified in a higher rate (P = 0.045), and, acting dominantly, was found to be a risk factor for clinical TB (P = 0.029). Homozygous TT genotype was significantly associated with lower CSF mononuclear leukocyte (ML) counts in patients with tuberculous meningitis (TBM) (P = 0.001). CONCLUSIONS/SIGNIFICANCE: The present study found an association of the CCL2 tag SNP rs4586 C allele and pediatric TB disease in males, suggesting that gender may affect the susceptibility to TB even in children. The association of homozygous TT genotype with decreased CSF mononuclear leukocyte (ML) count not only suggests a clinical significance of this SNP, but indicates its potential to assist in the clinical assessment of suspected TBM, where delay is critical and diagnosis is difficult

    Electroacupuncture for relieving itching in atopic eczema: study protocol for a multicenter, randomized, sham-controlled trial

    Get PDF
    BackgroundAtopic eczema (AE) is a common atopic inflammatory skin disease affecting 2.1–4.9% of the population in different countries. Pruritus, one of the most burdensome symptoms, is often underestimated for the problems it can cause, creating a vicious loop of itching, scratching, and lichenification. Therefore, further research into practical and safe treatments that relieve itchy symptoms and enhance skin protection is key to overcoming AE. Acupuncture, with or without electrical stimulation, is one of the most commonly used therapeutic measures to treat AE. This trial aimed to objectively evaluate the efficacy and safety of the electroacupuncture (EA) antipruritic technique in AE pruritus and obtain high-level clinical evidence for the popularization and application of EA for AE.Methods and analysisThis multicenter, single-blinded, randomized controlled trial is planned to transpire from April 15, 2023, to June 30, 2025. We will recruit 132 participants with AE (44 per group). Participants will be assigned randomly to three equal-sized groups: EA, sham electroacupuncture, and sham acupuncture. Treatment will be administered three times a week during the 2-week intervention phase. The primary outcome measure is the Visual Analog Scale, with a numeric rating scale to evaluate pruritus. Secondary outcome measures include the Eczema Area and Severity Index and Dermatology Life Quality Index. Other outcome measures include physical examination, serum IgE, and safety evaluation. The number, nature, and severity of adverse events will be carefully recorded.Trial registrationClinicalTrials.gov, 22Y11922200. Registered 3 September 2022, https://register.clinicaltrials.gov

    Stimulated thyroglobulin and pre-ablation antithyroglobulin antibody products can predict the response to radioiodine therapy of TgAb-positive differentiated thyroid cancer patients: a retrospective study

    Get PDF
    ObjectiveWe aimed to explore the predictive value of stimulated thyroglobulin (sTg) and pre-ablation antithyroglobulin (pa-TgAb) products for the effect of radioiodine therapy (RAIT) on TgAb-positive differentiated thyroid cancer (DTC) patients.MethodsIn this study, we enrolled 265 patients with TgAb-positive DTC who underwent RAIT after total thyroidectomy (TT). Based on the last follow-up result, the patients were divided into two groups: the excellent response (ER) group and the non-excellent response (NER) group. We analyzed the factors related to the effect of RAIT.ResultsThe ER group consisted of 197 patients. The NER group consisted of 68 patients. For the univariate analysis, we found that the maximal tumor diameter, whether with extrathyroidal extension (ETE), bilateral or unilateral primary lesion, multifocality, preoperative TgAb (preop-TgAb), pa-TgAb, sTg × pa-TgAb, initial RAIT dose, N stage, and surgical extent (modified radical neck dissection or not), showed significant differences between the ER group and NER group (all p-values <0.05). The receiver operating characteristic (ROC) curves showed that the cutoff value was 724.25 IU/ml, 424.00 IU/ml, and 59.73 for preop-TgAb, pa-TgAb, and sTg × pa-TgAb, respectively. The multivariate logistic regression analysis results indicated that pa-TgAb, sTg × pa-TgAb, initial RAIT dose, and N stage were independent risk factors for NER (all p-values <0.05). For the Kaplan–Meier analysis of disease-free survival (DFS), the median DFS of the patients with sTg × pa-TgAb < 59.73 and initial RAIT dose ≤ 100 mCi was significantly longer than that of the patients with sTg × pa-TgAb ≥ 59.73 (50.27 months vs. 48.59 months, p = 0.041) and initial RAIT dose >100 mCi (50.50 months vs. 38.00 months, p = 0.030).ConclusionWe found the sTg and pa-TgAb conducts is a good predictor of the efficacy of RAIT in TgAb-positive DTC patients. It can play a very positive and important role in optimizing treatment, improving prognosis, and reducing the burden of patients
    • …
    corecore