82 research outputs found

    Scalable Scheduling for Industrial Time-Sensitive Networking: A Hyper-flow Graph Based Scheme

    Full text link
    Industrial Time-Sensitive Networking (TSN) provides deterministic mechanisms for real-time and reliable flow transmission. Increasing attention has been paid to efficient scheduling for time-sensitive flows with stringent requirements such as ultra-low latency and jitter. In TSN, the fine-grained traffic shaping protocol, cyclic queuing and forwarding (CQF), eliminates uncertain delay and frame loss by cyclic traffic forwarding and queuing. However, it inevitably causes high scheduling complexity. Moreover, complexity is quite sensitive to flow attributes and network scale. The problem stems in part from the lack of an attribute mining mechanism in existing frame-based scheduling. For time-critical industrial networks with large-scale complex flows, a so-called hyper-flow graph based scheduling scheme is proposed to improve the scheduling scalability in terms of schedulability, scheduling efficiency and latency & jitter. The hyper-flow graph is built by aggregating similar flow sets as hyper-flow nodes and designing a hierarchical scheduling framework. The flow attribute-sensitive scheduling information is embedded into the condensed maximal cliques, and reverse maps them precisely to congestion flow portions for re-scheduling. Its parallel scheduling reduces network scale induced complexity. Further, this scheme is designed in its entirety as a comprehensive scheduling algorithm GH^2. It improves the three criteria of scalability along a Pareto front. Extensive simulation studies demonstrate its superiority. Notably, GH^2 is verified its scheduling stability with a runtime of less than 100 ms for 1000 flows and near 1/430 of the SOTA FITS method for 2000 flows

    Development of a synthetic oxytetracycline-inducible expression system for streptomycetes using de novo characterized genetic parts

    Get PDF
    Precise control of gene expression using exogenous factors is of great significance. To develop ideal inducible expression systems for streptomycetes, new genetic parts, oxytetracycline responsive repressor OtrR, operator otrO, and promoter otrBp from Streptomyces rimosus, were selected de novo and characterized in vivo and in vitro. OtrR showed strong affinity to otrO (KD = 1.7 × 10–10 M) and oxytetracycline induced dissociation of the OtrR/DNA complex in a concentration-dependent manner. On the basis of these genetic parts, a synthetic inducible expression system Potr* was optimized. Induction of Potr* with 0.01–4 μM of oxytetracycline triggered a wide-range expression level of gfp reporter gene in different Streptomyces species. Benchmarking Potr* against the widely used constitutive promoters ermE* and kasOp* revealed greatly enhanced levels of expression when Potr* was fully induced. Finally, Potr* was used as a tool to activate and optimize the expression of the silent jadomycin biosynthetic gene cluster in Streptomyces venezuelae. Altogether, the synthetic Potr* presents a new versatile tool for fine-tuning gene expression in streptomycetes

    Functional and effective connectivity analysis of drug-resistant epilepsy: a resting-state fMRI analysis

    Get PDF
    ObjectiveEpilepsy is considered as a neural network disorder. Seizure activity in epilepsy may disturb brain networks and damage brain functions. We propose using resting-state functional magnetic resonance imaging (rs-fMRI) data to characterize connectivity patterns in drug-resistant epilepsy.MethodsThis study enrolled 47 participants, including 28 with drug-resistant epilepsy and 19 healthy controls. Functional and effective connectivity was employed to assess drug-resistant epilepsy patients within resting state networks. The resting state functional connectivity (FC) analysis was performed to assess connectivity between each patient and healthy controls within the default mode network (DMN) and the dorsal attention network (DAN). In addition, dynamic causal modeling was used to compute effective connectivity (EC). Finally, a statistical analysis was performed to evaluate our findings.ResultsThe FC analysis revealed significant connectivity changes in patients giving 64.3% (18/28) and 78.6% (22/28) for DMN and DAN, respectively. Statistical analysis of FC was significant between the medial prefrontal cortex, posterior cingulate cortex, and bilateral inferior parietal cortex for DMN. For DAN, it was significant between the left and the right intraparietal sulcus and the frontal eye field. For the DMN, the patient group showed significant EC connectivity in the right inferior parietal cortex and the medial prefrontal cortex for the DMN. There was also bilateral connectivity between the medial prefrontal cortex and the posterior cingulate cortex, as well as between the left and right inferior parietal cortex. For DAN, patients showed significant connectivity in the right frontal eye field and the right intraparietal sulcus. Bilateral connectivity was also found between the left frontal eye field and the left intraparietal sulcus, as well as between the right frontal eye field and the right intraparietal sulcus. The statistical analysis of the EC revealed a significant result in the medial prefrontal cortex and the right intraparietal cortex for the DMN. The DAN was found significant in the left frontal eye field, as well as the left and right intraparietal sulcus.ConclusionOur results provide preliminary evidence to support that the combination of functional and effective connectivity analysis of rs-fMRI can aid in diagnosing epilepsy in the DMN and DAN networks

    Coating of manganese functional polyetheretherketone implants for osseous interface integration

    Get PDF
    Polyetheretherketone (PEEK) has been used extensively in biomedical engineering and it is highly desirable for PEEK implant to possess the ability to promote cell growth and significant osteogenic properties and consequently stimulate bone regeneration. In this study, a manganese modified PEEK implant (PEEK-PDA-Mn) was fabricated via polydopamine chemical treatment. The results showed that manganese was successfully immobilized on PEEK surface, and the surface roughness and hydrophilicity significantly improved after surface modification. Cell experiments in vitro demonstrated that the PEEK-PDA-Mn possesses superior cytocompatibility in cell adhesion and spread. Moreover, the osteogenic properties of PEEK-PDA-Mn were proved by the increased expression of osteogenic genes, alkaline phosphatase (ALP), and mineralization in vitro. Further rat femoral condyle defect model was utilized to assess bone formation ability of different PEEK implants in vivo. The results revealed that the PEEK-PDA-Mn group promoted bone tissue regeneration in defect area. Taken together, the simple immersing method can modify the surface of PEEK, giving outstanding biocompatibility and enhanced bone tissue regeneration ability to the modified PEEK, which could be applied as an orthopedic implant in clinical

    A FRET Based Two-Photon Fluorescent Probe for Visualizing Mitochondrial Thiols of Living Cells and Tissues

    No full text
    Glutathione (GSH) is the main component of the mitochondrial thiol pool and plays key roles in the biological processes. Many evidences have suggested that cysteine and homocysteine also exist in mitochondria and are interrelated with GSH in biological systems. The fluctuation of the levels of mitochondrial thiols has been linked to many diseases and cells’ dysfunction. Therefore, the monitoring of mitochondrial thiol status is of great significance for clinical studies. We report here a novel fluorescence resonance energy transfer based two-photon probe MT-1 for mitochondrial thiols detection. MT-1 was constructed by integrating the naphthalimide moiety (donor) and rhodamine B (accepter and targeting group) through a newly designed linker. MT-1 shows a fast response, high selectivity, and sensitivity to thiols, as well as a low limit of detection. The two-photon property of MT-1 allows the direct visualization of thiols in live cells and tissues by two-photon microscopy. MT-1 can serve as an effective tool to unravel the diverse biological functions of mitochondrial thiols in living systems

    Transcriptional Analysis Reveals Key Genes in the Pathogenesis of Nifedipine-Induced Gingival Overgrowth

    No full text
    Background. Nifedipine-induced gingival overgrowth (NGO) is a multifactorial pathogenesis with increased extracellular matrix including collagen and glycans, inflammatory cytokines, and phenotype changes of fibroblasts. However, the molecular etiology of NGO is not well understood. The objective of this study is to investigate the key genes in the pathogenesis of NGO. Methods. In this study, we examined the proliferation and migration abilities of fibroblasts derived from patients with chronic periodontitis, nifedipine nonresponder gingival overgrowth, gingival overgrowth caused by nifedipine, and healthy normal gingiva. We conducted RNA-Seq on these four groups of fibroblasts and analysed the differentially expressed genes (DEGs). Results. Fibroblasts derived from NGO patients had higher proliferation and migration abilities than those of the other groups. Protein-protein interaction network analysis indicated that TGFB2, ITGA8, ITGA11, FGF5, PLA2G4D, PLA2G2F, PTGS1, CSF1, LPAR1, CCL3, and NKX3-1 are involved in the development of NGO. These factors are related to the arachidonic acid metabolism and PI3K/AKT signaling pathways. Conclusion. Transcriptional gene expression analysis identified a number of DEGs that might be functionally related to gingival overgrowth induced by nifedipine. Our study provides important information on the molecular mechanism underlying nifedipine-induced gingival overgrowth
    • …
    corecore