123 research outputs found

    Polarimetric remote sensing in oxygen A and B bands: sensitivity study and information content analysis for vertical profile of aerosols

    Get PDF
    Theoretical analysis is conducted to reveal the information content of aerosol vertical profile in space-borne measurements of the backscattered radiance and degree of linear polarization (DOLP) in oxygen (O2) A and B bands. Assuming a quasi-Gaussian shape for aerosol vertical profile characterized by peak height H and half width y (at half maximum), the Unified Linearized Vector Radiative Transfer Model (UNL-VRTM) is used to simulate the Stokes fourvector elements of upwelling radiation at the top of atmosphere (TOA) and their Jacobians with respect to H and y. Calculations for different aerosol types and different combinations of H and values show that the wide range of gas absorption optical depth in O2 A and B band enables the sensitivity of backscattered DOLP and radiance at TOA to the aerosol layer at different altitudes. Quantitatively, DOLP in O2 A and B bands is found to be more sensitive to H and y than radiance, especially over the bright surfaces (with large visible reflectance). In many O2 absorption wavelengths, the degree of freedom of signal (DFS) for retrieving H (or y) generally increases with H (and y) and can be close to unity in many cases, assuming that the composite uncertainty from surface and aerosol scattering properties as well as measurements is less than 5%. Further analysis demonstrates that DFS needed for simultaneous retrieval of H and y can be obtained from a combined use of DOLP measurements at ~10–100 O2 A and B absorption wavelengths (or channels), depending on the specific values of H. The higher the aerosol layer, the fewer number of channels for DOLP measurements in O2 A and B bands are needed for characterizing H and . Future hyperspectral measurements of DOLP in O2 A and B bands are needed to continue studying their potential and their combination with radiance and DOLP in atmospheric window channels for retrieving the vertical profiles of aerosols, especially highly scattering aerosols, over land

    Field Evaluation for Air-source Transcritical CO2 Heat Pump Water Heater with Optimal Pressure Control

    Get PDF
    Air-source transcritical CO2 heat pump water heater (ATHW) can supply hot water from 60 ? to 90 ? at high efficiency with environment-friendly refrigerant CO2 for commercial, residential and industrial applications. Several optimal discharge pressure correlations for transcritical CO2 heat pump have been proposed in the past few years, most of which are related to the ambient temperature, the evaporation temperature and the gas cooler outlet temperature. In an earlier study, the authors’ research group had presented a study on the dependency of the optimal discharge pressure on the ambient temperature and the hot water outlet temperature. In this study, a revised model for optimal discharge pressure is developed based on experimental results. In order to validate the optimal discharge pressure model developed, field tests are conducted to evaluate the performance of an air-source transcritical CO2 heat pump water heater in practical application. The system is comprised of a semi-hermetic reciprocating compressor, a counter-flow tube-in-tube gas cooler, a counter-flow internal heat exchanger, a fin-and-tube evaporator, and an electronic expansion valve (EEV) driven by electrically operated step motor. A Siemens SIMATIC S7-200 Programmable Logic Controller (PLC) was used to regulate the compressor discharge pressure by adjusting the EEV opening and the water flow rate by changing the frequency of the variable speed water pump. Field tests were conducted under three different operating scenarios: the nominal test condition, high water supply temperature condition and low ambient air temperature condition. The results show that the coefficient of performance (COP) can achieve 3.76 in the nominal test condition with 15? water inlet temperature and 80? hot water supply temperature. Even when the hot water temperature is higher than 90?, the COP remains at 3.21 with 20? dry-bulb temperature and 15? wet-bulb temperature. Under low ambient air temperature condition, the COP was 2.19 with the hot-water supply temperature of 60?. Comparison between the field test results and the model predictions show that the maximum relative error of discharge pressure control was 5.6% in the low temperature condition, while the maximum relative error of system COP was only 4.7%. With the reasonable agreement observed between the field test results and the model prediction. It is reasonable and effective to model the optimal discharge pressure as the function of the ambient temperature and the water outlet temperature

    Fusarium Graminearum Growth Inhibition Due to Glucose Starvation Caused by Osthol

    Get PDF
    The effects of osthol, a plant coumarin, on morphology, sugar uptake and cell wall components of Fusarium graminearum were examined in vitro by electron microscopy,14C-labelling and enzyme activity detection. The results revealed that osthol could inhibit the hypha growth of F. graminearum by decreasing hyphal absorption to reducing sugar. After treatment with 100 μg·mL−1 osthol for 24 h, many hyphal fragments of F. graminearum appeared. Microscopy observation showed that the cell walls of hyphal fragments blurred and the organelles of the cells degraded with the increasing vacuoles. The N-acetyl-D-glucosamine contents and chitinase activity both increased when hypha were treated with 100 μg·mL−1 osthol, whereas the activity of β-1,6-glucanase remained unchanged. When F. graminearum fed with 14C glucose was treated with 100 μg·mL−1osthol, glucose contents decreased to the lowest level, while the contents in non-osthol treated controls remained unchanged. These results suggested that chitinase activity might be related to glucose starvation under osthol treatment, and that the appearance of hyphae fragments maybe the results of the promoted chitinase activity which itself triggered chitin degradation

    Polarimetric remote sensing in oxygen A and B bands: sensitivity study and information content analysis for vertical profile of aerosols

    Get PDF
    Theoretical analysis is conducted to reveal the information content of aerosol vertical profile in space-borne measurements of the backscattered radiance and degree of linear polarization (DOLP) in oxygen (O2) A and B bands. Assuming a quasi-Gaussian shape for aerosol vertical profile characterized by peak height H and half width y (at half maximum), the Unified Linearized Vector Radiative Transfer Model (UNL-VRTM) is used to simulate the Stokes fourvector elements of upwelling radiation at the top of atmosphere (TOA) and their Jacobians with respect to H and y. Calculations for different aerosol types and different combinations of H and values show that the wide range of gas absorption optical depth in O2 A and B band enables the sensitivity of backscattered DOLP and radiance at TOA to the aerosol layer at different altitudes. Quantitatively, DOLP in O2 A and B bands is found to be more sensitive to H and y than radiance, especially over the bright surfaces (with large visible reflectance). In many O2 absorption wavelengths, the degree of freedom of signal (DFS) for retrieving H (or y) generally increases with H (and y) and can be close to unity in many cases, assuming that the composite uncertainty from surface and aerosol scattering properties as well as measurements is less than 5%. Further analysis demonstrates that DFS needed for simultaneous retrieval of H and y can be obtained from a combined use of DOLP measurements at ~10–100 O2 A and B absorption wavelengths (or channels), depending on the specific values of H. The higher the aerosol layer, the fewer number of channels for DOLP measurements in O2 A and B bands are needed for characterizing H and . Future hyperspectral measurements of DOLP in O2 A and B bands are needed to continue studying their potential and their combination with radiance and DOLP in atmospheric window channels for retrieving the vertical profiles of aerosols, especially highly scattering aerosols, over land

    Antiviral Strategies in the Treatment of Viral Infections in Humans and Animals: Surface and Space Disinfection Strategies

    Get PDF
    The 2019 coronavirus (COVID-19) epidemic is rampant, making people’s awareness of virus elimination and prevention gradually increase, and giving more attention to the cleanliness of the indoor air environment and the use of goods. According to the World Health Organization (WHO) estimates, the annual global influenza cases can reach 1 billion, including 3 million to 5 million severe cases, and the number of deaths from influenza-related respiratory diseases recorded is as high as 290,000 to 650,000. The virus is generally transmitted through respiratory droplet transmission, airborne transmission, and contact transmission. For most infectious diseases, disinfection, isolation, and personal protection remain the most effective means, especially in the prevention and control of influenza, intestinal infectious diseases, contact-transmitted diseases, bloodborne diseases, and sexually transmitted diseases, which are most effective in spring, such as in 2019 coronavirus, severe acute respiratory syndrome (SARS), Middle East respiratory syndrome (MERS), influenza, and other. In respiratory infectious diseases, early disinfection is an important means of prevention and control; viruses can also be transmitted by contact and through a variety of ways, which occur in indoor spaces and on the surfaces of indoor objects. As a result, many different methods of disinfection have been conducted for indoor spaces and surfaces of objects

    Global analysis of phase locking in gene expression during cell cycle: the potential in network modeling

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In nonlinear dynamic systems, synchrony through oscillation and frequency modulation is a general control strategy to coordinate multiple modules in response to external signals. Conversely, the synchrony information can be utilized to infer interaction. Increasing evidence suggests that frequency modulation is also common in transcription regulation.</p> <p>Results</p> <p>In this study, we investigate the potential of phase locking analysis, a technique to study the synchrony patterns, in the transcription network modeling of time course gene expression data. Using the yeast cell cycle data, we show that significant phase locking exists between transcription factors and their targets, between gene pairs with prior evidence of physical or genetic interactions, and among cell cycle genes. When compared with simple correlation we found that the phase locking metric can identify gene pairs that interact with each other more efficiently. In addition, it can automatically address issues of arbitrary time lags or different dynamic time scales in different genes, without the need for alignment. Interestingly, many of the phase locked gene pairs exhibit higher order than 1:1 locking, and significant phase lags with respect to each other. Based on these findings we propose a new phase locking metric for network reconstruction using time course gene expression data. We show that it is efficient at identifying network modules of focused biological themes that are important to cell cycle regulation.</p> <p>Conclusions</p> <p>Our result demonstrates the potential of phase locking analysis in transcription network modeling. It also suggests the importance of understanding the dynamics underlying the gene expression patterns.</p

    Highly efficient room-temperature nonvolatile magnetic switching by current in Fe3GaTe2 thin flakes

    Full text link
    Effectively tuning magnetic state by using current is essential for novel spintronic devices. Magnetic van der Waals (vdW) materials have shown superior properties for the applications of magnetic information storage based on the efficient spin torque effect. However, for most of known vdW ferromagnets, the ferromagnetic transition temperatures lower than room temperature strongly impede their applications and the room-temperature vdW spintronic device with low energy consumption is still a long-sought goal. Here, we realize the highly efficient room-temperature nonvolatile magnetic switching by current in a single-material device based on vdW ferromagnet Fe3GaTe2. Moreover, the switching current density and power dissipation are about 300 and 60000 times smaller than conventional spin-orbit-torque devices of magnet/heavymetal heterostructures. These findings make an important progress on the applications of magnetic vdW materials in the fields of spintronics and magnetic information storage.Comment: 18 page2, 4 figure
    • …
    corecore