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ABSTRACT 
 

Several optimal discharge pressure correlations for transcritical CO2 heat pump in literature have been discussed 

in this paper. Most of them are related to the ambient temperature, the evaporation temperature and the gas 

cooler outlet temperature. A revised optimal discharge pressure model as the function of ambient temperature 

and water outlet temperature is developed based on earlier experimental results. To validate the model 

developed and control effect in practical applications, field tests are conducted to evaluate the performance of an 

air-source transcritical CO2 heat pump water heater in practical application. The results show that the coefficient 

of performance (COP) can achieve 3.76 in the nominal test condition with 15℃ water inlet temperature and 

80℃ hot water supply temperature. Even when the hot water temperature is higher than 90℃, the COP remains 

at 3.21 with 20℃ dry-bulb temperature and 15℃ wet-bulb temperature. Under -15℃ low ambient air 

temperature condition, the COP was 2.19 with the hot-water supply temperature of 60℃.  Comparison between 

the field test results and the model predictions show that the maximum relative error of discharge pressure 

control was 3.2% in the high temperature of water outlet condition. The overall ATHP system performance 

based on the revised model and PLC control strategy can meet the requirements in practical applications. 

 

Keywords: Transcritical, Field Test, CO2, Heat Pump, Optimal Discharge Pressure, COP 

 

1. INTRUDUCTION 
 

As a natural refrigerant, carbon dioxide is a kind of promising replacement substance for traditional refrigerants 

in air conditioning and heat pump systems. However, the critical temperature point of carbon dioxide is low and 

corresponding operating pressure is high compared with other refrigerants (Lorentzen, 1994; Lorentzen, 1995). 

In practice, the components of CO2 refrigeration system must be able to undertake high pressure and meet the 

safety requirements. So at one time, carbon dioxide was replaced by synthetic refrigerants and stepped down 

from the stage of history gradually. As far as the perfect match of the refrigerant temperature glide and the 

increasing water temperature in the gas cooler is concerned, transcritical CO2 refrigeration systems have 

incomparable advantage over other heating methods (Riffat et al., 1996). Air-source transcritical CO2 heat pump 

water heater (ATHW) can supply hot water from 60℃ to 90℃ at high efficiency for commercial and residential 

applications (Yokoyama et al.,2007). In theoretical simulation and practical operating, the optimal heat rejection 

pressure of transcritical CO2 heat pump system is the most significant factor to be considered to improve the 

overall system performance.  

 

Many scholars have conducted investigations on the optimal heat rejection pressure of transcritical CO2 heat 

pump system and made great achievements. Inokmy (1923) presented a graphical method to find the optimum 

pressure for trans-critical CO2 refrigeration cycle. Kauf (1999) conducted a simulation model to find the optimal 

heat rejection pressure for the maximum COP and get the correlation of optimum high pressure and gas cooler 

outlet temperature or ambient temperature. Liao et al. (2000) developed a correlation of the optimal heat 

rejection pressure in terms of appropriate parameters, such as gas cooler outlet temperature, evaporation 

temperature and isentropic efficiency of the compressor for specific conditions. Sarkar et al. (2004) conducted 

an investigation of transcritical CO2 heat pump cycle for simultaneous cooling and heating applications. Finally, 

Expressions for maximum COP and optimum discharge pressure with relation of cycle parameter have been 

developed (Sarkar et al., 2006). Chen (2005) performed an analysis on the relationship between the optimum 

high pressure and other systematic parameters. Cecchinato et al. (2010) critically discussed the optimal pressure 

expressions of several authors, and finally concluded that an approximated correlation should be critically 
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evaluated before it applied to practical. Qi et al. (2013) presented an experimental investigation of the optimal 

heat rejection pressure for a transcritical CO2 heat pump water heater and obtained a simple correlation of the 

optimal heat rejection pressure in terms of gas-cooler outlet refrigeration temperature. Zhang et al. (2013) 

carried out the simulation and experimental investigations on the relationships between optimum heat rejection 

pressures and related operating parameters for a transcritical system using R744/R290 mixture as a refrigerant. 

Finally, a correlation of the optimal heat rejection pressure with respect to the mass fraction, the outlet 

refrigerant temperature of the gas cooler, the evaporation temperature is obtained under the specific conditions.  

 

There are many specific experimental and theoretical developments on transcritical CO2 heat pump system used 

to supply hot water with high temperature. Jørn Stene (2005) carried out theoretical and experimental studies on 

air-source transcritical CO2 heat pump system combined space heating and hot water heating. Yokoyama et al. 

(2010) numerically analyzed the performance of an air-to-water CO2 heat pump water heating system and the 

influence of a daily change in a standardized hot water demand on the system performance. Yamaguchi et al. 

(2011) developed a simulation model for a CO2 heat pump water heater and validated it with experimental 

results. Wang et al. (2013) analyzed the main affecting factors on a transcritical CO2 heat pump water heater at a 

fixed water inlet temperature, and conducted an experimental research on a prototype in different working 

conditions. White et al. (2002) constructed a prototype transcritical CO2 heat pump for heating water to 

temperatures greater than 65℃. When the evaporation temperature and hot water temperature were 0.3℃ and 

77.5℃, the heating coefficient of performance of the prototype was 3.4. 

 

Although a lot of optimal discharge pressure correlations for transcritical CO2 heat pump have been proposed 

and many specific experimental and theoretical developments have been achieved in the past few years. The 

optimal pressure control method for transcritical CO2 heat pump is still a hard question in practical application. 

Silvia Minetto (2011) described the development of a CO2 air/water heat pump for the production of tap hot 

water in a residential building and developed a new control method for the upper cycle pressure to maximize the 

COP of tested heat pump system. W. Zhang and C. Zhang (2011) proposed a novel correlation-free on-line 

optimal control method, which use the on-line correction formula to track the optimal pressure set point for CO2 

transcritical refrigeration systems. Cecchinato et al. (2012) developed a real-time model-based optimization 

algorithm for the optimal or quasi-optimal pressure determination as a more efficient and robust solution than 

literature approximated ones. The proposed algorithm was dynamically tested by simulation, considering the 

performance of a supply water temperature controlled carbon dioxide heat pump. Ciro Aprea and Angelo 

Maiorino (2009) developed an implementable procedure on a cheaper electronic controller to drive an electronic 

back pressure valve with a simple optimal pressure model based on Liao et al.’s correlation. 

 

In this paper, a revised model for optimal discharge pressure was developed based on experimental results and 

validated with an air-source transcritical CO2 heat pump water heater in practical application. The field 

evolutions of optimal discharge pressure control effect were conducted to evaluate the system performance at 

three diffident operating conditions. With the reasonable agreement observed between the field test results and 

the model prediction. It is reasonable and effective to model the optimal discharge pressure as the function of 

the ambient temperature and the water outlet temperature. The overall ATHP system performance based on the 

revised model and PLC control strategy can meet the requirements in practical applications. 

 

2. THE OPTIMAL DISCHARGE PRESSURE  
 

2.1 Problem Definition 
The optimal discharge pressure of a transcritical CO2 refrigeration system is defined as: under certain operating 

conditions (the fixed gas cooler outlet temperature, evaporation temperature and other system parameters), the 

increase or decrease of compressor outlet pressure would cause COP reduction of the system, then the right 

compressor outlet pressure is called optimal discharge pressure on this conditions. 

 

Hence there exists an optimal discharge pressure where the system reaches the best COP and the knowledge of 

the optimal operating conditions corresponding to the maximum COP is a very important factor in the design of 

a transcritical CO2 refrigeration system. The gas cooler outlet temperature is dependent on external fluid inlet 

temperature; hence, at any discharge pressure, gas cooler outlet temperature will be fixed for a certain fluid inlet 

condition. Under certain environment temperature condition, the evaporation temperature is almost stable 

because of the constant heat transfer temperature difference. The existence of an optimal discharge pressure for 

fixed operating conditions can be supported by the following argument. For transcritical CO2 cycle 1–2–3–4–5–

6–1 (Figure 1), COP for the heating mode is given by: 

           
     

     
                                                                 (1) 
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Figure 1: P-h diagram of transcritical CO2 cycle for various high pressures 

With increase of compressor discharge pressure for a constant cooler outlet temperature of T3; the heating 

coefficient of performance expression gets modified as: 

            
(     )        

(     )    
                                                        (2)  

Due to the unique behavioral pattern of carbon dioxide properties around the critical point and beyond, the slope 

of the isotherms is quite modest for a specific pressure range; at other pressures above and below this range, the 

isotherms are quite steep. As high pressure of the cycle increases, the state point of gas cooler outlet changes 

correspondingly. Just as indicated by 3a, the quantity     is large compared to    ; as is evident from Figure 1, 

and this causes an increase in the modified COP value as can be observed from Eq. (2). Along with the high 

pressure rise, the state point of gas cooler outlet can reach to 3b, and then the increasement of     gets much 

smaller compared to 3a. At a particular pressure, the COP attains a maximum value. With further increase in 

pressure, just as 3c,     does not produce the required gain over     and thus the COP begins to fall. The 

pressure range where the isotherms are fairly flat and where this beneficial gain in COP occurs varies 

considerably with gas cooler outlet temperature. For a CO2 refrigeration system, the gas cooler outlet 

temperature is dependent on external fluid inlet temperature (Kauf, 1999; Chen and Gu, 2005). Hence the fluid 

inlet temperature plays an influential role in determining the optimum operating conditions for the cycle. 

 

2.2 Literature Correlations 
Inokmy (1923) presented a graphical method to find the optimum pressure for trans-critical CO2 refrigeration 

cycle used in automobile A/C systems. However, modern refrigeration systems have to fulfil many requirements, 

which include a rapidly growing number of applications. Professor Lorentzen (1994) in Norwegian University 

of Science and Technology (NTNU) discussed the trans-critical CO2 refrigeration systems in motor car air 

conditioning, distinct heating and commercial refrigeration combined with hot tap water.  Finally it is concluded 

that the optimal discharge pressure was mainly determined by the CO2 gas cooler outlet temperature. Kauf 

(1999) found the graphical method is too time-consuming to determine the optimum high pressure if several 

operating conditions are investigated. The correlation of optimum high pressure and gas cooler outlet 

temperature or ambient temperature was introduced by simplifying the simulation of trans-critical CO2 

refrigeration cycle. Based on the cycle simulations, Liao et al. (2000) obtained the correlation of optimal heat 

rejection pressure in terms of gas cooler outlet temperature, evaporation temperature and isentropic efficiency of 

the compressor for specific conditions. Under a certain range of conditions, the isentropic efficiency is a 

constant or independent of the heat rejection pressure. It can be concluded that the optimal heat rejection 

pressure is a function of the evaporation temperature and the outlet temperature of gas cooler.  The effectiveness 

of the internal heat exchanger was first considered to be an influencing factor to system performance by Sarkar 

et al. (2004). Finally it was concluded the effects of evaporator temperature and gas cooler outlet temperature 

were more predominant compared to internal heat exchanger effectiveness in determining the optimal high 

pressure correlations.  Sarkar et al. (2006) introduced the compressor speed and inlet temperature of the fluid to 

be heated in gas cooler to invest the relationship of the optimal COP and system parameters. The effects of heat 

exchanger area ratio of gas cooler and evaporator on system performance were presented as well. The 

correlation of optimal high pressure related to fluid inlet temperature is obtained based on the fixed water outlet 

temperature, specified compressor displacement volume and heat exchanger area ratio. The mathematical 

correlation between the optimum high pressure and environmental temperature or gas cooler outlet temperature 

was established by Chen and Gu (2005). Qi et al. (2013) obtained a simple correlation of the optimal heat 

rejection pressure in terms of gas-cooler outlet refrigeration temperature for a transcritical CO2 heat pump water 

heater. All the above expressions are based on several assumptions that differ one from another and also vary 

with the experimental behavior of the facility. 
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Table 1: Comparison of literature correlations  

 correlations conditions 

Kauf                                     ℃       50℃ 

Liao et al.           (              )                     -10℃      20℃; 

30℃          60℃ 

Sarkar et al. 2004                                                 
    ℃       50℃; 

-10℃      10℃ 

Sarkar et al. 2006                                ℃        40℃ 

Chen and Gu                                              ℃       50℃ 

Qi et al.                                    
              

    ℃          45℃ 

 

where：popt was the optimal high pressure, tair and tgc,out   were the ambient temperature and gas cooler out 

temperature, respectively. Te and tw,in were the evaporating temperature and water inlet temperature, 

respectively.  

             
2.3 Optimal Discharge Pressure Correlation 
Based on the experimental plant, CO2 gas cooler outlet temperatures and evaporator temperatures are variables 

with change of discharge pressures (Wang et al., 2013). Meanwhile, variation trends of CO2 gas cooler outlet 

temperatures and evaporating temperatures are different with variation of discharge pressure at different ambient 

temperatures and water outlet temperatures. That means, the correlations presented in literatures for the optimal 

discharge pressure as the function of gas cooler outlet temperatures or fluid inlet temperature and evaporating 

temperatures is not suitable for control system, especially at the process of seeking the optimal status in a real 

plant. Essentially, as steady-state simulation of literatures, the correlations for the optimal discharge pressures 

only can be used to predict the optimal discharge pressures at certain gas cooler outlet temperature and 

evaporating temperature. 

 

Therefore, based on more experimental results from the production unit, we obtained the revised correlations for 

the optimal discharge pressure as the function of ambient temperatures and water outlet temperatures, as shown 

below. The revised correlations are suitable for ambient temperatures from -15℃ to 35℃ and water outlet 

temperatures from55℃ to 95℃. The water inlet temperature is between10℃ to 15℃ for all the conditions. 
 

                                                      
  

 5℃≤    ≤35℃                  (3a) 

                                           
               

-15℃≤    <5℃                  (3b) 

Where temperature is with the unit of ℃ while pressure is with the unit of MPa. Compared with the correlations 

given by Shouguo Wang (2013), the revised correlations are more reliable for high water outlet temperature 

conditions. 

 

For application of the revised correlations for the optimal discharge pressure in an production units, firstly, 

according to ambient temperatures and required water outlet temperatures, the optimal discharge pressure can be 

calculated with the correlation, and then based on real-time discharge pressures measured by pressure 

transducers, control system can keep discharge pressure at the predicted optimal value by regulating the opening 

of expansion valve. 

3. FIELD TEST 
 

3.1 Application Introduction 
To verify the control precision of the system optimal discharge pressure and evaluate the system performance of 

optimal pressure control strategy, an air-source transcritical CO2 heat pump water heater of practical production 

was tested to get the system performance and optimal pressure control effect. The evaluation test was 

established in National Quality Supervision and Inspection Center of Compressor and Refrigerator Products, 

China from May 1
st
 to May 3

rd
 of 2013. ATHW was designed to replace the traditional oil-fired or coal-fired 

boilers and electric heating water heater in residential and commercial applications. With additional electric 
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heater, an ATHW can supply boiled water around the whole year.   

 

3.2 Test Facilities and Method 

 

Figure 2: The schematic of a transcritical CO2 heat pump water heater 

 

The tested system is fully instrumented to evaluate its performance as a whole, and that of its individual 

components. The schematic of tested transcritical CO2 heat pump system is shown in Figure 2. The temperatures 

are measured with T-type thermocouple temperature sensors with an accuracy of ±0.5℃. The pressures in the 

system are measured with pressure transducers ± (0.2% of full scale, 16MPa accuracy). The mass flow rate of 

water is measured by an Electromagnetic mass flow meter ± (0.5% of full scale accuracy). The electrical power 

input is monitored using a digital power meter QT1600 with an accuracy of ± (0.1% of range + 0.05% of 

reading). All the pressure, temperature, flow rate and power readings are continuously monitored by a calibrated 

Agilent HP34970 data acquisition system. The pressure and temperature are also collected by Siemens 

SIMATIC S7-200 Programmable Logic Controller (PLC) to predict the optimal discharge pressure.  

 

Table 2: Characteristics of main components of the system 

Components Characteristics 

CO2 compressor Semi-hermetic piston, Swept volume: 10.7 m³·h-1, Input power: 18 kW, Rotational speed: 1450 r·min-1 

Gas cooler Tube-in-tube, Counter flow, Stainless steel outer tube(water): Φ64 mm, Copper inner tube(CO2): 

Φ7.94mm, Smooth tubes 

IHX Tube-in-tube heat exchanger, Heat transfer area: 0.16 m2 

Evaporator Fin and tube heat exchanger, Heat transfer area 75 m2 

Fan  Axial flow, Volume flow: 16000 m³·h-1 

EEV JKV-24D, Electrically operated step motor valve 

Receiver Inner volume 0.125 m3 

Solenoid valve HPV-825DS, CV: 0.038 

 

The system is mainly comprised of a semi-hermetic reciprocating compressor, a finned-tube evaporator, a 

receiver, a filter, electronic expansion valves, a tube-in-tube gas cooler and defrosting solenoid value. The 

detailed characteristics of main components are shown in Table 2. The field test was conducted for three 

operating conditions: nominal condition, high temperature of water outlet (HTWO) and low ambient 

temperature (LAT) condition.  The detail information for three operating conditions is presented in Table 3. 

 

Table 3: Field test conditions  

items Ambient temperature 

Dry(Wet or RH) bulb 

Water inlet 

temperature 

Water outlet 

temperature 

Nominal condition 25(23) ℃ 15℃ 80℃ 

HTWO 20(15) ℃ 15℃ 90℃ 

LAT -15(60%) ℃ 12℃ 60℃ 
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This test system could either be controlled automatically or manually, which could shorten the regulating time. 

The tested transcritical CO2 heat pump water heater is shown in Figure 3. 

 

 

Figure 3: Picture of the transcritical CO2 heat pump water heater 

3.3 Control Strategy 
The control program consists of five subprograms: the startup subprogram, the stopping subprogram, the 

troubleshooting subprogram, the defrosting subprogram and the optimal pressure control subprogram. As the 

core part of control system, the optimal pressure control plays a significant role in determining the heating 

capacity and COP under certain operating condition. The compressor discharge pressure is achieved by 

adjusting the opening degree of the electronic expansion valve. According to the characteristics of PLC output, 

the idea of sequential control is adopted for the whole control process. Therefore, the control variables are 

processed at once after the end of the single scanning cycle. 

 

Figure 4 shows the control strategy of system high pressure in optimal pressure control subprogram. As can be 

seen that the predicted optimal pressure is calculated after the system parameters are acquired. When the 

difference between the predicted value and the test high pressure is less than 0.01MPa, the opening degree of the 

EEV is no longer adjusted; otherwise, the opening degree of EEV will be regulated in the next cycle. The 

direction of EEV adjustment is decided by the minus of predicted value and test high pressure. If the result is 

positive, the opening degree will decrease. If the result is negative, the opening degree will increase. The time of 

scanning is much faster than the time of system parameters changing, which is the most important feature of the 

optimal pressure control strategy. All of this can reach the requirement of control precision. 

 
Figure 4: The optimal pressure control strategy 

 

4. RESULTS AND DISCUSSION 
 

Based on test facilities and control strategy, field evaluation was conducted to investigate the field test high 

pressure and system performance. The field test was conducted for three operating conditions: nominal 
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condition, high temperature of water outlet and low ambient temperature condition. In the following sections, 

tested results are discussed. 

 

4.1 Nominal Condition 
It can be seen from Figure 5 that the water inlet and outlet temperature as well as the ambient temperature were 

recorded under nominal condition. At the beginning of the test, the water outlet temperature was adjusted by 

regulating the water flow rate. The stable test process started at 300s, and then all the temperatures were almost 

constant in the whole test. The maximum deviation of the water outlet temperature is 2.4%. 

 

 
Figure 5: Test temperatures for nominal condition 

Figure 6 shows the test pressure and predicted pressure in the nominal test condition, respectively. Based on the 

temperature recorded, the predicted pressure can be got by correlation (3a). Just as the variation of water outlet 

temperature at the beginning, the predicted pressure increased gradually to reach the requirement for standard 

hot water supply. To catch up with the predicted value, the test pressure was adjusted by changing the openings 

of EEV. When the difference was obvious, the change of openings was dramatic. The reverse is also true. So the 

test pressure fluctuated several times before it reached to target.  In the whole stable test, the deviation of test 

pressure was 1.8%, which meant the control precision was accurate for nominal test condition.    

 

 
Figure 6: Test and predicted pressures for nominal condition 

 

4.2 HTWO Condition 
Figure 7 presents the water inlet temperature, water outlet temperature and ambient temperature for HTWO 

condition. Just as the nominal condition, the water outlet temperature raised correspondingly with the regulation 

of water flow rate at the beginning. After that, the water outlet temperature kept stable for the whole test process 

from 300s to 2100s.  For every test condition, the whole stable test period was 1800s.  The maximum deviation 

of the water outlet temperature is 2.6% for HTWO condition. 
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Figure 7: Test temperatures for HTWO condition 

 

The test pressure and predicted pressure in the HTWO test condition is represented in Figure 8. With the 

constant of ambient temperature, the predicted pressure was just the single function of water outlet temperature. 

So before the test pressure reached a small neighborhood of predicted one, the openings of EEV changed rapidly 

to adjusting the actual test pressure. In the second half of the test, the predicted pressure and test pressure 

matched very well. For the whole 1800s stable test, the average test pressure was 11.64Mpa. To further evaluate 

the control procedure, the deviation of test pressure and predicted pressure was calculated for HTWO condition. 

The maximum value was 3.2% for the stable test process. 

 

 
Figure 8: Test and predicted pressures for HTWO Condition 

 

4.3 LAT Condition 
As shown in Figure 9, the water inlet temperature, water outlet temperature and the ambient temperature were 

also obtained for LAT condition. In the first 300s, the water outlet temperature was much lower than 60℃ 

because of over required water flow rate. While the water inlet temperature and ambient temperature had 

already meat the test requirement. By reducing the water flow rate, the water outlet temperature increased 

significantly. For the whole test of neat 1800s, the water outlet temperature was no big difference with 60℃. 

The maximum deviation of the water outlet temperature is 1.2% for LAT condition. 
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Figure 9: Test temperatures for LAT condition 

 

For LAT condition, the test pressure and predicted pressure were presented in Figure10. Based on the 

temperature recorded in Figure 9, the predicted pressure can be got by correlation (3b). More difference from 

the previous test conditions, the test pressure jumped erratically in the first 300s and fluctuated periodically in 

the rest time. This was mainly because the openings were over the critical point of EEV. When the opening was 

smaller than the critical point, the test pressure increased sharply. When the opening was bigger than the critical 

point, the test pressure decreased sharply. For the stable teat process from 300s to 2100s, the periodical variation 

of test pressure was the result of optimal high pressure control strategy. So the test pressure fluctuated regularly 

over the predicted pressure in the stable test process.  For low temperature test condition, the average test 

pressure was 8.06Mpa, which was closer to the predicted pressure. Correspondingly, the maximum deviation of 

the test pressure was 1.8% for control accuracy. 

 

 
 

Figure 10: Test and predicted pressures for LAT Condition 

 

4.4 Test Summary 
The actual compressor discharge pressure control strategy was applied to air-source transcritical CO2 heat pump 

water heater for three different test conditions. Based on the PLC control strategy and data collection, the system 

operating parameters were described above. To better evaluate the performance of HTHP, a test summary at 

different test conditions was made and the results were shown in Table 4. All those system performance: the 

system heating capacity, power consumption and COP were also obtained by the HP34970 data acquisition 

system. 

Table 4: Test summary  

 

items Heating capacity 

kW 

Power consumption 

kW 

COP 

Nominal condition 69.065 18.384 3.76 

HTWO 59.664 18.585 3.21 

LAT 27.877 12.734 2.19 
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5. CONCLUSION 
 

The optimal discharge pressure correlations for transcritical CO2 heat pump under specific conditions were 

discussed. The optimal discharge pressure as the function of gas cooler outlet temperatures or fluid inlet 

temperature and evaporating temperatures is not suitable for control system, especially at the process of seeking 

the optimal status in a real plant. In this paper, a revised optimal discharge pressure related to ambient 

temperature and water outlet temperature was introduced based on experimental prototype.   

 

To further verify the correctness of the optimal discharge pressure correlation introduced, an air-source 

transcritical CO2 heat pump water heater in practical application was tested to get the system performance and 

optimal pressure control effect. The field test results show the COP can achieve 3.76 in the nominal test 

conditions with 80℃ hot water supplied. Even when the hot water temperature is higher than 90℃, the COP 

keeps at 3.21 with 25℃ environment temperature. Under -15℃ low ambient air temperature condition, the COP 

was 2.19 with the hot-water supply temperature of 60℃. Based on the comparison between field test results and 

the model predictions, the maximum error of discharge pressure control was 3.2% in the high temperature water 

outlet conditions. A reasonable agreement between field test results and model predictions was achieved. That 

means the overall ATHP system performance based on the revised model and PLC control strategy can meet the 

requirements in practical applications. 

 

NOMENCLATURE 

 
h Specific enthalpy  (kJ•kg-1) 

Δh Enthalpy difference (kJ•kg-1) 

P Pressure      (MPa) 

t Temperature (
o
C)   

Subscript 

opt optimal   

air                       air temperature 

gc                       gas cooler 

e                       evaporator temperature 

w                                 water  

in                                 inlet 

out                               outlet 
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