34 research outputs found

    Noise-Robust Fine-Tuning of Pretrained Language Models via External Guidance

    Full text link
    Adopting a two-stage paradigm of pretraining followed by fine-tuning, Pretrained Language Models (PLMs) have achieved substantial advancements in the field of natural language processing. However, in real-world scenarios, data labels are often noisy due to the complex annotation process, making it essential to develop strategies for fine-tuning PLMs with such noisy labels. To this end, we introduce an innovative approach for fine-tuning PLMs using noisy labels, which incorporates the guidance of Large Language Models (LLMs) like ChatGPT. This guidance assists in accurately distinguishing between clean and noisy samples and provides supplementary information beyond the noisy labels, thereby boosting the learning process during fine-tuning PLMs. Extensive experiments on synthetic and real-world noisy datasets further demonstrate the superior advantages of our framework over the state-of-the-art baselines.Comment: EMNLP Findings 202

    Hypothesis Search: Inductive Reasoning with Language Models

    Full text link
    Inductive reasoning is a core problem-solving capacity: humans can identify underlying principles from a few examples, which can then be robustly generalized to novel scenarios. Recent work has evaluated large language models (LLMs) on inductive reasoning tasks by directly prompting them yielding "in context learning." This can work well for straightforward inductive tasks, but performs very poorly on more complex tasks such as the Abstraction and Reasoning Corpus (ARC). In this work, we propose to improve the inductive reasoning ability of LLMs by generating explicit hypotheses at multiple levels of abstraction: we prompt the LLM to propose multiple abstract hypotheses about the problem, in natural language, then implement the natural language hypotheses as concrete Python programs. These programs can be directly verified by running on the observed examples and generalized to novel inputs. Because of the prohibitive cost of generation with state-of-the-art LLMs, we consider a middle step to filter the set of hypotheses that will be implemented into programs: we either ask the LLM to summarize into a smaller set of hypotheses, or ask human annotators to select a subset of the hypotheses. We verify our pipeline's effectiveness on the ARC visual inductive reasoning benchmark, its variant 1D-ARC, and string transformation dataset SyGuS. On a random 40-problem subset of ARC, our automated pipeline using LLM summaries achieves 27.5% accuracy, significantly outperforming the direct prompting baseline (accuracy of 12.5%). With the minimal human input of selecting from LLM-generated candidates, the performance is boosted to 37.5%. (And we argue this is a lower bound on the performance of our approach without filtering.) Our ablation studies show that abstract hypothesis generation and concrete program representations are both beneficial for LLMs to perform inductive reasoning tasks

    Federated Knowledge Graph Completion via Latent Embedding Sharing and Tensor Factorization

    Full text link
    Knowledge graphs (KGs), which consist of triples, are inherently incomplete and always require completion procedure to predict missing triples. In real-world scenarios, KGs are distributed across clients, complicating completion tasks due to privacy restrictions. Many frameworks have been proposed to address the issue of federated knowledge graph completion. However, the existing frameworks, including FedE, FedR, and FEKG, have certain limitations. = FedE poses a risk of information leakage, FedR's optimization efficacy diminishes when there is minimal overlap among relations, and FKGE suffers from computational costs and mode collapse issues. To address these issues, we propose a novel method, i.e., Federated Latent Embedding Sharing Tensor factorization (FLEST), which is a novel approach using federated tensor factorization for KG completion. FLEST decompose the embedding matrix and enables sharing of latent dictionary embeddings to lower privacy risks. Empirical results demonstrate FLEST's effectiveness and efficiency, offering a balanced solution between performance and privacy. FLEST expands the application of federated tensor factorization in KG completion tasks.Comment: Accepted by ICDM 202

    Mitigating Popularity Bias in Recommendation with Unbalanced Interactions: A Gradient Perspective

    Full text link
    Recommender systems learn from historical user-item interactions to identify preferred items for target users. These observed interactions are usually unbalanced following a long-tailed distribution. Such long-tailed data lead to popularity bias to recommend popular but not personalized items to users. We present a gradient perspective to understand two negative impacts of popularity bias in recommendation model optimization: (i) the gradient direction of popular item embeddings is closer to that of positive interactions, and (ii) the magnitude of positive gradient for popular items are much greater than that of unpopular items. To address these issues, we propose a simple yet efficient framework to mitigate popularity bias from a gradient perspective. Specifically, we first normalize each user embedding and record accumulated gradients of users and items via popularity bias measures in model training. To address the popularity bias issues, we develop a gradient-based embedding adjustment approach used in model testing. This strategy is generic, model-agnostic, and can be seamlessly integrated into most existing recommender systems. Our extensive experiments on two classic recommendation models and four real-world datasets demonstrate the effectiveness of our method over state-of-the-art debiasing baselines.Comment: Recommendation System, Popularity Bia

    AutoMLP: Automated MLP for Sequential Recommendations

    Full text link
    Sequential recommender systems aim to predict users' next interested item given their historical interactions. However, a long-standing issue is how to distinguish between users' long/short-term interests, which may be heterogeneous and contribute differently to the next recommendation. Existing approaches usually set pre-defined short-term interest length by exhaustive search or empirical experience, which is either highly inefficient or yields subpar results. The recent advanced transformer-based models can achieve state-of-the-art performances despite the aforementioned issue, but they have a quadratic computational complexity to the length of the input sequence. To this end, this paper proposes a novel sequential recommender system, AutoMLP, aiming for better modeling users' long/short-term interests from their historical interactions. In addition, we design an automated and adaptive search algorithm for preferable short-term interest length via end-to-end optimization. Through extensive experiments, we show that AutoMLP has competitive performance against state-of-the-art methods, while maintaining linear computational complexity.Comment: Accepted by WWW'2

    Preserving the woody plant tree of life in China under future climate and land-cover changes

    Get PDF
    The tree of life (TOL) is severely threatened by climate and land-cover changes. Preserving the TOL is urgent, but has not been included in the post-2020 global biodiversity framework. Protected areas (PAs) are fundamental for biological conservation. However, we know little about the effectiveness of existing PAs in preserving the TOL of plants and how to prioritize PA expansion for better TOL preservation under future climate and land-cover changes. Here, using high-resolution distribution maps of 8732 woody species in China and phylogeny-based Zonation, we find that current PAs perform poorly in preserving the TOL both at present and in 2070s. The geographical coverage of TOL branches by current PAs is approx. 9%, and less than 3% of the identified priority areas for preserving the TOL are currently protected. Interestingly, the geographical coverage of TOL branches by PAs will be improved from 9% to 52-79% by the identified priority areas for PA expansion. Human pressures in the identified priority areas are high, leading to high cost for future PA expansion. We thus suggest that besides nature reserves and national parks, other effective area-based conservation measures should be considered. Our study argues for the inclusion of preserving the TOL in the post-2020 conservation framework, and provides references for decision-makers to preserve the Earth's evolutionary history.Fil: Peng, Shijia. Peking University; ChinaFil: Hu, Ruocheng. Peking University; ChinaFil: Velazco, Santiago José Elías. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Biología Subtropical. Instituto de Biología Subtropical - Nodo Puerto Iguazú | Universidad Nacional de Misiones. Instituto de Biología Subtropical. Instituto de Biología Subtropical - Nodo Puerto Iguazú; Argentina. Universidade Federal da Integração Latino-Americana; Brasil. University of California; Estados UnidosFil: Luo, Yuan. Peking University; ChinaFil: Lyu, Tong. Peking University; ChinaFil: Zhang, Xiaoling. Peking University; ChinaFil: Zhang, Jian. East China Normal University; ChinaFil: Wang, Zhiheng. Peking University; Chin

    Internal Feature Selection Method of CSP Based on L1-Norm and Dempster–Shafer Theory

    Get PDF
    The common spatial pattern (CSP) algorithm is a well-recognized spatial filtering method for feature extraction in motor imagery (MI)-based brain–computer interfaces (BCIs). However, due to the influence of nonstationary in electroencephalography (EEG) and inherent defects of the CSP objective function, the spatial filters, and their corresponding features are not necessarily optimal in the feature space used within CSP. In this work, we design a new feature selection method to address this issue by selecting features based on an improved objective function. Especially, improvements are made in suppressing outliers and discovering features with larger interclass distances. Moreover, a fusion algorithm based on the Dempster–Shafer theory is proposed, which takes into consideration the distribution of features. With two competition data sets, we first evaluate the performance of the improved objective functions in terms of classification accuracy, feature distribution, and embeddability. Then, a comparison with other feature selection methods is carried out in both accuracy and computational time. Experimental results show that the proposed methods consume less additional computational cost and result in a significant increase in the performance of MI-based BCI systems
    corecore