14,873 research outputs found

    Using practice effects for targeted trials or sub-group analysis in Alzheimer\u27s disease: How practice effects predict change over time

    Get PDF
    OBJECTIVE: To describe the presence of practice effects in persons with Alzheimer disease (AD) or mild cognitive impairment (MCI) and to evaluate how practice effects affect cognitive progression and the outcome of clinical trials. METHODS: Using data from a meta-database consisting of 18 studies including participants from the Alzheimer disease Cooperative Study (ADCS) and the Alzheimer Disease Neuroimaging Initiative (ADNI) with ADAS-Cog11 as the primary outcome, we defined practice effects based on the improvement in the first two ADAS-Cog11 scores and then estimated the presence of practice effects and compared the cognitive progression between participants with and without practice effects. The robustness of practice effects was investigated using CDR SB, an outcome independent the definition itself. Furthermore, we evaluated how practice effects can affect sample size estimation. RESULTS: The overall percent of practice effects for AD participants was 39.0% and 53.3% for MCI participants. For AD studies, the mean change from baseline to 2 years was 12.8 points for the non-practice effects group vs 7.4 for the practice effects group; whereas for MCI studies, it was 4.1 for non-practice effects group vs 0.2 for the practice effects group. AD participants without practice effects progressed 0.9 points faster than those with practice effects over a period of 2 years in CDR-SB; whereas for MCI participants, the difference is 0.7 points. The sample sizes can be different by over 35% when estimated based on participants with/without practice effects. CONCLUSION: Practice effects were prevalent and robust in persons with AD or MCI and affected the cognitive progression and sample size estimation. Planning of future AD or MCI clinical trials should account for practice effects to avoid underpower or considers target trials or stratification analysis based on practice effects

    Differential neuroproteomic and systems biology analysis of spinal cord injury

    Get PDF
    Acute spinal cord injury (SCI) is a devastating condition with many consequences and no known effective treatment. Although it is quite easy to diagnose traumatic SCI, the assessment of injury severity and projection of disease progression or recovery are often challenging, as no consensus biomarkers have been clearly identified. Here rats were subjected to experimental moderate or severe thoracic SCI. At 24h and 7d postinjury, spinal cord segment caudal to injury center versus sham samples was harvested and subjected to differential proteomic analysis. Cationic/anionic-exchange chromatography, followed by 1D polyacrylamide gel electrophoresis, was used to reduce protein complexity. A reverse phase liquid chromatography-tandem mass spectrometry proteomic platform was then utilized to identify proteome changes associated with SCI. Twenty-two and 22 proteins were up-regulated at 24 h and 7 day after SCI, respectively; whereas 19 and 16 proteins are down-regulated at 24 h and 7 day after SCI, respectively, when compared with sham control. A subset of 12 proteins were identified as candidate SCI biomarkers - TF (Transferrin), FASN (Fatty acid synthase), NME1 (Nucleoside diphosphate kinase 1), STMN1 (Stathmin 1), EEF2 (Eukaryotic translation elongation factor 2), CTSD (Cathepsin D), ANXA1 (Annexin A1), ANXA2 (Annexin A2), PGM1 (Phosphoglucomutase 1), PEA15 (Phosphoprotein enriched in astrocytes 15), GOT2 (Glutamic-oxaloacetic transaminase 2), and TPI-1 (Triosephosphate isomerase 1), data are available via ProteomeXchange with identifier PXD003473. In addition, Transferrin, Cathepsin D, and TPI-1 and PEA15 were further verified in rat spinal cord tissue and/or CSF samples after SCI and in human CSF samples from moderate/severe SCI patients. Lastly, a systems biology approach was utilized to determine the critical biochemical pathways and interactome in the pathogenesis of SCI. Thus, SCI candidate biomarkers identified can be used to correlate with disease progression or to identify potential SCI therapeutic targets

    Leaf-Encapsulated Vaccines: Agroinfiltration and Transient Expression of the Antigen Staphylococcal Endotoxin B in Radish Leaves.

    Get PDF
    Transgene introgression is a major concern associated with transgenic plant-based vaccines. Agroinfiltration can be used to selectively transform nonreproductive organs and avoid introgression. Here, we introduce a new vaccine modality in which Staphylococcal enterotoxin B (SEB) genes are agroinfiltrated into radishes (Raphanw sativus L.), resulting in transient expression and accumulation of SEB in planta. This approach can simultaneously express multiple antigens in a single leaf. Furthermore, the potential of high-throughput vaccine production was demonstrated by simultaneously agroinfiltrating multiple radish leaves using a multichannel pipette. The expression of SEB was detectable in two leaf cell types (epidermal and guard cells) in agroinfiltrated leaves. ICR mice intranasally immunized with homogenized leaves agroinfiltrated with SEB elicited detectable antibody to SEB and displayed protection against SEB-induced interferon-gamma (IFN-γ) production. The concept of encapsulating antigens in leaves rather than purifying them for immunization may facilitate rapid vaccine production during an epidemic disease
    corecore