19,298 research outputs found

    Design and Testing of Simple, Electrically Small, Low-Profile, Huygens Source Antennas with Broadside Radiation Performance

    Full text link
    © 2016 IEEE. The efficacy of a simple, electrically small, low-profile, Huygens source antenna that radiates in its broadside direction is demonstrated numerically and experimentally. First, two types of electrically small, near-field resonant parasitic (NFRP) antennas are introduced and their individual radiation performance characteristics are discussed. The electric one is based on a modified Egyptian axe dipole NFRP element; the magnetic one is based on a capacitively loaded loop NFRP element. In both cases, the driven element is a simple coax-fed dipole antenna, and there is no ground plane. By organically combining these two elements, Huygens source antennas are obtained. A forward propagating demonstrator version was fabricated and tested. The experimental results are in good agreement with their analytical and simulated values. This low profile, ∼0.05λ0, and electrically small, ka = 0.645, prototype yielded a peak realized gain of 2.03 dBi in the broadside direction with a front-to-back ratio of 16.92 dB. A backward radiating version is also obtained; its simulated current distribution behavior is compared with that of the forward version to illustrate the design principles

    Designs of Compact, Planar, Wideband, Monopole Filtennas with Near-Field Resonant Parasitic Elements

    Full text link
    © 2018 IEEE. Two planar efficient wideband, electrically small monopole filtennas are presented. The first one directly evolves from a common planar capacitively loaded loop (CLL)-based filter possessing a flat realized gain response within the operational band and good band-edge selectivity. The second filtenna consists of a driven element augmented with a CLL structure and with slots etched into its ground plane. It expands the fractional impedance bandwidth of the first case from 6.28 percent up to 7.9 percent. It also has a gain response that remains flat over its operational bandwidth and even higher band-edge selectivity. Both filtennas are electrically small with ka less than 1. The experimental results, which are in good agreement with their simulated values, demonstrate that both filtennas exhibit excellent impedance matching, high radiation efficiency, flat gain response, and steep skirts at both band edges. Moreover, they produce monopole radiation patterns that are uniform and nearly omnidirectional in their H-planes

    Compact Planar Ultrawideband Antennas with Continuously Tunable, Independent Band-Notched Filters

    Full text link
    © 2016 IEEE. A compact planar ultrawideband antenna with continuously tunable, independent band notches for cognitive radio applications is presented. The antenna is fabricated using a copper-cladded substrate. A radiating patch with an inverted rectangular T-slot is etched on the top side of the substrate. A straight rectangular strip with a complete gap is embedded into the T-slot. By placing a single varactor diode across this gap, a frequency-agile band-notch function below 5 GHz is realized. On the bottom side of the substrate, a U-shaped parasitic element having an interdigitated-structure is placed beneath the radiating patch. The second narrow band notch is created by inserting a second varactor diode into the gap on one leg of the parasitic element. It has a frequency-agile performance above 5 GHz. The presence of the interdigitated structure suppresses higher order resonant modes and enhances the tunability of the notched bandwidth. Because these antenna structures naturally block dc, a very small number of lumped elements are required. The experimental results, which are in good agreement with their simulated values, demonstrate that both band notches can be independently controlled and the entire frequency-agile fractional bandwidth is as high as 74.5%, demonstrating a very wide notched frequency-agile coverage

    Physical Layer Security in Large-Scale Millimeter Wave Ad Hoc Networks

    Get PDF
    Wireless networks with directional antennas, like millimeter wave (mmWave) networks, have enhanced security. For a large scale mmWave ad hoc network in which eavesdroppers are randomly located, however, eavesdroppers can still intercept the confidential messages, since they may reside in the signal beam. This paper explores the potential of physical layer security in the mmWave ad hoc networks. Specifically, we characterize the impact of mmWave channel characteristics and large antenna arrays on the secrecy performance. We also characterize the impact of artificial noise in this networks. Our results reveal that in the low transmit power regime, the use of low mmWave frequency achieves better secrecy performance, when increasing transmit power, a transition from low mmWave frequency to high mmWave frequency is demanded for obtaining more secrecy rate. Eavesdroppers can intercept more information by using wide beam pattern. Furthermore, the use of artificial noise may be unable to enhance the secrecy rate for the case of low node density

    Quantification of optical pulsed-plane-wave-shaping by chiral sculptured thin films

    Get PDF
    The durations and average speeds of ultrashort optical pulses transmitted through chiral sculptured thin films (STFs) were calculated using a finite-difference time-domain algorithm. Chiral STFs are a class of nanoengineered materials whose microstructure comprises parallel helicoidal nanowires grown normal to a substrate. The nanowires are ∼\sim10-300 nm in diameter and ∼1−10μ\sim1-10 \mum in length. Durations of transmitted pulses tend to increase with decreasing (free-space) wavelength of the carrier plane wave, while average speeds tend to increase with increasing wavelength. An increase in nonlinearity, as manifested by an intensity-dependent refractive index in the frequency domain, tends to increase durations of transmitted pulses and decrease average speeds. The circular Bragg phenomenon exhibited by a chiral STFs manifests itself in the frequency domain as high reflectivity for normally incident carrier plane waves whose circular polarization state is matched to the structural handedness of the film and whose wavelength falls in a range known as the Bragg regime; films of the opposite structural handedness reflect such plane waves little. This effect tends to distort the shapes of transmitted pulses with respect to the incident pulses, and such shaping can cause sharp changes in some measures of average speed with respect to carrier wavelength. A local maximum in the variation of one measure of the pulse duration with respect to wavelength is noted and attributed to the circular Bragg phenomenon. Several of these effects are explained via frequency-domain arguments. The presented results serve as a foundation for future theoretical and experimental studies of optical pulse propagation through causal, nonlinear, nonhomogeneous, and anisotropic materials.Comment: To appear in Journal of Modern Optic

    Compact, Frequency-Reconfigurable Filtenna with Sharply Defined Wideband and Continuously Tunable Narrowband States

    Full text link
    © 1963-2012 IEEE. A compact, frequency-reconfigurable filtenna with sharp out-of-band rejection in both its wideband and continuously tunable narrowband states is presented. It is intended for use in cognitive radio applications. The wideband state is the sensing state and operationally covers 2.35-4.98 GHz. The narrowband states are intended to cover communications within the 3.05-4.39 GHz range, which completely covers the Worldwide Interoperability for Microwave Access (WiMAX) band and the satellite communications C-band. A p-i-n diode is employed to switch between these wide and narrowband operational states. Two varactor diodes are used to shift the operational frequencies continuously among the narrowband states. The filtenna consists of a funnel-shaped monopole augmented with a reconfigurable filter; it has a compact electrical size: 0.235λLL × 0.392λL , where the wavelength λL corresponds to the lower bound of its operational frequencies. The measured reflection coefficients, radiation patterns, and realized gains for both operational states are in good agreement with their simulated values

    Observation of ion gettering effect in high temperature superconducting oxide material

    Get PDF
    Ion gettering effect has been observed in high-temperature superconducting YBa2Cu3O7 material. Silicon ions were implanted into the material and subsequent high-temperature annealing produced ion movement from a low concentration region to a higher concentration region where the damage of the crystal structure is severe. This gettering effect could be used to make a superconductor-nonsuperconductor-superconductor trilayer structure within a single YBCO film.published_or_final_versio

    Factors controlling tropospheric O3, OH, NOx, and SO2 over the tropical Pacific during PEM-Tropics B

    Get PDF
    Observations over the tropical Pacific during the Pacific Exploratory Mission (PEM)-Tropics B experiment (March-April 1999) are analyzed. Concentrations of CO and long-lived nonmethane hydrocarbons in the region are significantly enhanced due to transport of pollutants from northern industrial continents. This pollutant import also enhances moderately O3 concentrations but not NOx concentrations. It therefore tends to depress OH concentrations over the tropical Pacific. These effects contrast to the large enhancements of O3 and NOx concentrations and the moderate increase of OH concentrations due to biomass burning outflow during the PEM-Tropics A experiment (September-October 1996). Observed CH3I concentrations, as in PEM-Tropics A, indicate that convective mass outflux in the middle and upper troposphere is largely independent of altitude over the tropical Pacific. Constraining a one-dimensiohal model with CH3I observations yields a 10-day timescale for convective turnover of the free troposphere, a factor of 2 faster than during PEM-Tropics A. Model simulated HO2, CH2O, H2O2, and CH3OOH concentrations are generally in agreement with observations. However, simulated OH concentrations are lower (∼25%) than observations above 6 km. Whereas models tend to overestimate previous field measurements, simulated HNO3 concentrations during PEM-Tropics B are too low (a factor of 2-4 below 6 km) compared to observations. Budget analyses indicate that chemical production of O3 accounts for only 50% of chemical loss; significant transport of O3 into the region appears to take place within the tropics. Convective transport of CH3OOH enhances the production of HOx and O3 in the upper troposphere, but this effect is offset by HOx loss due to the scavenging of H2O2. Convective transport and scavenging of reactive nitrogen species imply a necessary source of 0.4-1 Tg yr-1 of NOx in the free troposphere (above 4 km) over the tropics. A large fraction of the source could be from marine lightning. Oxidation of DMS transported by convection from the boundary layer could explain the observed free tropospheric SO2 concentrations over the tropical Pacific. This source of DMS due to convection, however, would imply in the model free tropospheric concentrations much higher than observed. The model overestimate cannot be reconciled using recent kinetics measurements of the DMS-OH adduct reaction at low pressures and temperatures and may reflect enhanced OH oxidation of DMS during convection. Copyright 2001 by the American Geophysical Union
    • …
    corecore