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Abstract—Wireless networks with directional antennas, like
millimeter wave networks, have enhanced security. For a large-
scale mmWave ad hoc network in which eavesdroppers are
randomly located, however, eavesdroppers can still intercept the
confidential messages, since they may reside in the signal beam.
This paper explores the potential of physical layer security in
the mmWave ad hoc networks. Specifically, we characterize the
impact of mmWave channel characteristics and large antenna
arrays on the secrecy performance. We also characterize the
impact of artificial noise in this networks. Our results reveal
that in the low transmit power regime, the use of low mmWave
frequency achieves better secrecy performance, when increasing
transmit power, a transition from low mmWave frequency to high
mmWave frequency is demanded for obtaining more secrecy rate.
Eavesdroppers can intercept more information by using wide
beam pattern. Furthermore, the use of artificial noise may be
unable to enhance the secrecy rate for the case of low node
density.

I. INTRODUCTION

Millimeter wave (mmWave) ad hoc networks enable higher
rate coverage with the assistance of directional transmissions
and large bandwidths [1]. They have application in several
areas including tactical networks [2], device-to-device, and
personal area networking. Since the open nature of wire-
less medium makes the wireless transmission vulnerable to
eavesdropping, security is also an important requirement for
mmWave ad hoc networks. Physical layer security provides
an alternative for safeguarding wireless transmission [3], by
exploiting randomness in the wireless channel.

Physical layer security in mmWave systems has attracted
recent interest [4–7], due to the peculiar mmWave channel
characteristics. In [4], mmWave antenna subset modulation
was designed to secure point-to-point communication by intro-
ducing randomness in the received constellation, which con-
founds the eavesdropper. In [5], the mmWave multiple-input,
single-output, multiple-eavesdroppers channel was considered
in a single cell, and it was indicated that high-speed secure
link at the mmWave frequencies could be reached. The work
of [6] illustrated the impacts of key factors such as large
bandwidth and directionality on the physical layer security
in mmWave networks, and provided more opportunities and
challenges in this field. In [7], it was shown that even only
one eavesdropper may be able to successfully intercept highly
directional mmWave transmission. In the work of [7], although
the eavesdropper was located outside the signal beam, reflec-
tions could be exploited by the eavesdropper that used small-
scale reflectors within the beam, which has little blockage

effect on the legitimate receiver’s performance. While the
prior works are mainly focused on eavesdroppers with fixed
locations (See [4–7]), secrecy in large scale mmWave networks
with randomly located eavesdroppers has not been conducted
yet.

In this paper, we analyze physical layer security in large
scale mmWave ad hoc networks using stochastic geometry.
Our analysis accounts for the key features of mmWave channel
and the impacts of antenna array gain. We also examine the
case of using artificial noise for potential secrecy enhancement.
The results provide insight into the interplay between transmit
power and mmWave frequency. Compared to eavesdropping,
the performance is dominated by the surrounding interference
in the high node density case. Moreover, artificial noise may
not be beneficial to enhance secrecy rate in this networks.

II. SYSTEM DESCRIPTION

Consider a mmWave ad hoc network, where a group of
transmitting nodes are randomly distributed following a ho-
mogeneous Poisson point process (PPP) Φ with density λ. The
dipole model is adopted [8], where the distance for a typical
transmitting node-receiver is fixed at r, and the typical receiver
is assumed to be located at the origin. Both the transmitting
node and its corresponding receiver use directional beamform-
ing for data transmission, which is intercepted by multiple
eavesdroppers. We consider the passive eavesdropping without
any active attacks to deteriorate the information transmission.
The locations of eavesdroppers are modeled following an
independent homogeneous PPP Φe with density λe. Following
[9], we use a sectored model to analyze the beam pattern, i.e.,
the effective antenna gain for an interferer i seen by the typical
receiver is expressed as

Gi =


G2

M, PrMM=
(
θ

2π

)2
GMGm, PrMm= θ(2π−θ)

(2π)2

GmGM, PrMm= θ(2π−θ)
(2π)2

G2
m, Prmm =

(
2π−θ

2π

)2 , (1)

where GM denotes the main-lobe gain with the beamwidth
θ, Gm denotes the back-lobe gain, and Pr`k (`, k ∈ {M,m})
denotes the probability that the antenna gain G`Gk occurs. We
assume that the maximum array gain GMGM is obtained for
the typical transmitting node-receiver.

In light of the blockage effects in the outdoor scenario,
the signal path can be line-of-sight (LoS) mmWave BS or
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non-line-of-sight (NLoS) [10]. We denote fPr (R) as the
probability that a link at a distance R is LoS, while the
NLoS probability of a link is 1−fPr (R). The LoS probability
function fPr (R) can be obtained from field measurements or
stochastic blockage models [9].

We employ a short-range propagation model in which given
a distance |Xi|, the path loss function is denoted as L (|X|) =
β(max (d, |X|))−α with a reference distance d [11], here, β is
the frequency independent constant parameter of the path loss,
and α is the path loss exponent depending on the LoS or NLoS
link, namely α = αLoS for LoS link and α = αNLoS for NLoS
link. Note that the sparse scattering mmWave environment
makes many traditional fading distributions invalid for the
modeling of the mmWave channel [12], for tractability, we
neglect small scale fading as [13] argues that fading is not
significant in LOS links with significant beamforming. Hence
the signal-to-interference-plus-noise ratio (SINR) at the typical
receiver is written as

γo =
PtG

2
ML (r)∑

i∈Φ/o PtGiL (|Xi|) + σ2
o

, (2)

where Pt denotes the transmit power, |Xi| is the distance
between the typical receiver and the interferer i ∈ Φ/o (except
the typical transmitting node), and σ2

o is the noise power.
When the eavesdropping channel is degraded under the

effect of interference, secrecy indeed becomes better. In this
paper, we focus on the worst-case eavesdropping scenario,
where all the eavesdroppers can mitigate the interference.
In fact, eavesdroppers are usually assumed to have strong
ability, and they may cooperate with each other to cancel
the interference, as seen in [14]. In such a scenario, the
most malicious eavesdropper that has the largest SINR of
the received signal dominates the secrecy rate [15]. Thus, the
SINR at the most malicious eavesdropper is written as

γe∗ = max
e∈Φe

{
PtGeL (|Xe|)

σ2
e

}
, (3)

where |Xe| is the distance between the typical transmitting
node and the eavesdropper e ∈ Φe, σ2

e is the power of noise
and weak interference, and Ge is the antenna gain seen from
the eavesdropper e ∈ Φe described by

Ge =


GMG

e
M, PrMM= θφ

(2π)2

GMG
e
m, PrMm= θ(2π−φ)

(2π)2

GmG
e
M, PrMm= 2π−θφ

(2π)2

GmG
e
m, Prmm = (2π−θ)(2π−φ)

(2π)2

, (4)

in which φ, GeM and Gem are the beamwidth of the main-lobe,
main-lobe gain and back-lobe gain of the beam pattern used
by the eavesdropper e ∈ Φe, respectively.

III. SECRECY EVALUATION

In this section, we analyze the average secrecy rate in
mmWave ad hoc networks. As shown in [3], physical layer

security is commonly characterized by the secrecy rate Rs,
which is defined as

Rs = [log2 (1 + γo)− log2 (1 + γe∗)]
+
. (5)

Using Jensen’s inequality, the average secrecy rate is lower
bounded as

R
L

s =
[
R−Re∗

]+
, (6)

where [x]+ = max{x, 0}, R = E [log2 (1 + γo)] is the average
rate of the channel between the typical transmitting node and
its receiver, and Re∗ = E [log2 (1 + γe∗)] is the average rate
of the channel between the typical transmitting node and the
most malicious eavesdropper.

To evaluate the average secrecy rate, we first derive the
average rate R, which is given by the following theorem.

Theorem 1: The exact average rate between the typical
transmitting node and its intended receiver is given by

R =
1

ln 2

∫ ∞
0

1

z
(1− Ξ1(z))Ξ2(z)e−zσ

2
odz, (7)

where Ξ1(z) and Ξ2(z) are respectively given by (8) and (9)
at the top of next page.

Proof 1: Using [16, Lemma 1], the average rate R is
calculated as

R =E [log2 (1 + γ0)] =
1

ln 2

∫ ∞
0

1

z
(1− e−zγo)e−zdz

=
1

ln 2
E
[∫ ∞

0

1

z
(1− e−zY )e−z(I+σ2

0)dz

]
=

1

ln 2

∫ ∞
0

1

z
(1− E

[
e−zY

]︸ ︷︷ ︸
Ξ1(z)

)E
[
e−zI

]︸ ︷︷ ︸
Ξ2(z)

e−zσ
2
0dz, (10)

where Y = PtG
2
ML (r) is dependent on the LoS or NLoS

condition given a distance r, and the interference I is

I =
∑

i∈Φ/o
PtGiL (|Xi|). (11)

Based on the law of total expectation, we can directly ob-
tain Ξ1(z) as (8). Then, we see that Ξ2(z) is the Laplace
transform of I. To solve it, using the thinning theorem [17],
the mmWave transmitting nodes are divided into two inde-
pendent PPPs, namely LoS point process ΦLoS with density
function λfPr(R), and NLoS point process ΦNLoS with density
function λ(1− fPr(R)). Accordingly, by using the Slivnyak’s
theorem [17], Ξ2(z) is given by

Ξ2(z) = E
[
e−zI

]
= E

[
e−z(ILoS+INLoS)

]
= E

[
e−zILoS

]
E
[
e−zINLoS

]
(12)

with  ILoS =
∑

i∈ΦLoS

PtGiL (|Xi|),

INLoS =
∑

i∈ΦNLoS

PtGiL (|Xi|).
(13)



Ξ1(z) = fPr (r) e−zPtG
2
Mβ(max {r,d})−αLoS

+ (1− fPr (r))e−zPtG
2
Mβ(max {r,d})−αNLoS (8)

Ξ2(z) = exp
(
− 2πλ

∫ ∞
0

fPr (u) (1− Ω1(z, u))udu− 2πλ

∫ ∞
0

(1− fPr (u))(1− Ω2(z, u))udu
)

(9)

with 
Ω1(z, u) =

∑
`,k∈{M,m}

Pr`k × e−zPtG`Gkβ(max {u,d})−αLoS

Ω2(z, u) =
∑

`,k∈{M,m}

Pr`k × e−zPtG`Gkβ(max {u,d})−αNLoS

By applying the Laplace functional of the PPP [17],

E
[
e−zILoS

]
= exp

(
− 2πλ×∫ ∞

0

fPr (u)
(

1− E
[
e−zPtGiβ(max {u,d})−αLoS

]
︸ ︷︷ ︸

Ω1

)
udu

)
. (14)

Based on the array gain distribution in (1) and the law of total
expectation, Ω1 is obtained as

Ω1(z, u) =
∑

`,k∈{M,m}

Pr`k × e−zPtG`Gkβ(max {u,d})−αLoS
. (15)

Likewise, we can derive E
[
e−zINLoS

]
. Then, we get Ξ2(z) in

(9). Based on (10) and (9), we attain the desired result in (7).
We next derive the average rate between the typical trans-

mitting node and the most malicious eavesdropper, which is
given by the following theorem.

Theorem 2: The exact average rate between the typical
transmitting node and the most malicious eavesdropper is
given by

Re∗ =
1

ln 2

∫ ∞
0

(1− P1 (x)P2 (x))

1 + x
dx, (16)

where P1 (x) and P2 (x) are given in (17) and (18) with
1 (A) representing the indicator function that returns one if
the condition A is satisfied.

Proof 2: The average rate Re∗ is calculated as

Re∗ = E [log2 (1 + γe∗)]

=
1

ln 2

∫ ∞
0

(1− Fγe∗ (x))

1 + x
dx, (19)

where Fγe∗ (·) is the cumulative distribution function (CDF)
of γe∗ . By using the thinning theorem [8], the eavesdroppers
are divided into the LoS point process ΦLoS

e with density
function λefPr(R), and NLoS point process ΦNLoS

e with
density function λe(1− fPr(R)). Then, Fγe∗ (·) is given by

Fγe∗ (x) = Pr (γe∗ < x) = Pr
(
max

{
γLoS
e∗ , γNLoS

e∗
}
< x

)
= Pr

(
γLoS
e∗ < x

)︸ ︷︷ ︸
P1(x)

Pr
(
γNLoS
e∗ < x

)︸ ︷︷ ︸
P2(x)

, (20)

where 
γLoS
e∗ = max

e∈ΦLoS
e

{
PtGeL (|Xe|)

σ2
e

}
,

γNLoS
e∗ = max

e∈ΦNLoS
e

{
PtGeL (|Xe|)

σ2
e

}
.

(21)

We first derive P1 (x) as

P1 (x) = Pr
(
γLoS
e∗ < x

)
= E

 ∏
e∈ΦLoS

e

Pr

(
PtGeβ (max {re, d})−αLoS

σ2
e

< x

) .
(22)

Using the Laplace functional [17], after some manipulations,
we get P1 (x) in (17). Then, P2 (x) is similarly derived as
(18).
Substituting (7) and (16) into (5), we obtain the average
secrecy rate in this network.

IV. ARTIFICIAL NOISE AIDED TRANSMISSION

In this section, we evaluate the secrecy performance for the
artificial noise aided transmission [6]. For this case, the total
power per transmission is Pt = PS + PA, where the power
allocated to the information signal is PS = µPt, and the power
allocated to the artificial noise is PA = (1 − µ)Pt. Here, µ
is the fraction of power assigned to the information signal.
The effective antenna gain GSi for the information signal of
an interfering i seen by the typical receiver is expressed as

GSi =


GSMGM, PrSMM = ϑθ

(2π)2

GSMGm, PrSMm = ϑ(2π−θ)
(2π)2

GSmGM, PrSmM = (2π−ϑ)θ

(2π)2

GSmGm, PrSmm = (2π−ϑ)(2π−θ)
(2π)2

, (23)

where ϑ, GSM and GSm are the beamwidth of the main-lobe,
main-lobe gain and back-lobe gain for the information signal
of an interfering i, respectively. Likewise, the effective antenna



P1 (x) = exp

−2πλe
∑

`,n∈{M,m}

Pr`n

∫ ∞
0

1

(
max{re, d} <

(PtG`Genβ
xσ2

e

) 1
αLoS

)
fPr(re)redre

 (17)

P2 (x) = exp

−2πλe
∑

`,n∈{M,m}

Pr`n

∫ ∞
0

1

(
max{re, d} <

(PtG`Genβ
xσ2

e

) 1
αNLoS

)
(1− fPr(re))redre

 (18)

gain for the artificial noise of an interfering i seen by the
typical receiver is expressed as

GAi =


GAMGM, PrAMM = ςθ

(2π)2

GAMGm, PrAMm = ς(2π−θ)
(2π)2

GAmGM, PrAmM = (2π−ς)θ
(2π)2

GAmGm, PrAmm = (2π−ς)(2π−θ)
(2π)2

, (24)

where ς , GAM and GAm are the beamwidth of the main-lobe,
main-lobe gain and back-lobe gain for the artificial noise of
an interfering i, respectively. The effective antenna gain GSe
and GAe for the information signal and artificial noise of the
typical transmitting node seen by the eavesdropper e ∈ Φe can
be respectively given from (23) and (24) by interchanging the
parameters GM → GeM, Gm → Gem and θ → φ.

Considering that the artificial noise sent by the typical trans-
mitting node has negligible effect on the typical receiver [6],
the SINR at the typical receiver is given by

γ̃o =
PSG

S
MGML (r)∑

i∈Φ/o

(
PSGSi + PAGAi

)
L (|Xi|) + σ2

o

. (25)

The SINR at the most malicious eavesdropper is given by

γ̃e∗ = max
e∈Φe

{
PSG

S
eL (|Xe|)

PAGAe L (|Xe|) + σ2
e

}
. (26)

Following (6), the average secrecy rate for the artificial noise
aided transmission is lower bounded as

R̃L
S =

[
R̃− R̃∗e

]+
, (27)

where R̃ = E [log2 (1 + γ̃o)] and R̃∗e = E [log2 (1 + γ̃e∗)], R̃
and R̃∗e are given by the following theorems.

Theorem 3: The exact average rate for the artificial noise
aided transmission between the typical transmitting node and
its intended receiver is given by

R̃ =
1

ln 2

∫ ∞
0

1

z
(1− Ξ̃1(z))Ξ̃2(z)e−zσ

2
0dz, (28)

where Ξ̃1(z) and Ξ̃2(z) are respectively given by (29) and (30)
at the top of next page. In (30), PrM = θ

2π and Prm = 1−PrM.
Proof 3: It can be proved by following a similar approach

shown in the Theorem 1 .
We next present the average rate between the typical trans-

mitting node and the most malicious eavesdropper as follows.

TABLE I
PATH LOSS EXPONENT FOR MM-WAVE OUTDOOR CHANNELS [18].

Path loss exponent 38 GHz 60 GHz
LOS 2 2.25

Strongest NLOS 3.71 3.76

TABLE II
ANTENNA PATTERN [19].

Number of antenna elements N

Beamwidth θ
2π
√
N

Main-lobe gain N

Side-lobe gain
1

sin2(3π/2
√
N)

Theorem 4: The exact average rate for the artificial noise
aided transmission between the typical transmitting node and
the most malicious eavesdropper is given by

R̃∗e =
1

ln 2

∫ ∞
0

(
1− P̃1 (x) P̃2 (x)

)
1 + x

dx, (31)

where P̃1 (x) and P̃2 (x) are respectively given by (32) and
(33) at the top of next page. In (32) and (33), PreM = φ

2π and
Prem = 1− PreM.

Proof 4: It can be proved by following a similar approach
shown in the Theorem 2.

Substituting (28) and (16) into (27), we obtain the average
secrecy rate for the artificial noise aided transmission.

V. NUMERICAL RESULTS

Numerical results are presented to understand the impact of
mmWave channel characteristics and large antenna array on
the secrecy rate. We assume that the LoS probability function
is fPr (R) = e−%R with % = 141.4 m [9]. The mmWave
bandwidth is BW = 2 GHz, the noise figure is Nf = 10 dB,
the noise power is σ2

o = σ2
e = −174 + 10 log 10(BW)+Nf

dBm, and the reference distance is d = 1.
We focus on the carrier frequency at 38 GHz and 60 GHz,

in which their LoS and NLoS path loss exponents are shown
in Table I based on the practical channel measurements [18].

A. Average Secrecy Rate without artificial noise

We consider the uniform planar array (UPA) with the
antenna pattern shown in Table II. The transmitting nodes and



Ξ̃1(z) = fPr (r) e−zPSG
S
MGMβ(max {r,d})−αLoS

+ (1− fPr (r))e−zPSG
S
MGMβ(max {r,d})−αNLoS (29)

Ξ̃2(z) = exp
(
− 2πλ

∫ ∞
0

fPr (u) (1− Ω̃1(z, u))udu− 2πλ

∫ ∞
0

(1− fPr (u))(1− Ω̃2(z, u))udu
)

(30)

with 
Ω̃1(z, u) =

∑
`,ν,k∈{M,m}

PrS`kPrAνk
Prk

× e−z(PSG
S
` Gk+PAG

A
ν Gk)β(max {u,d})−αLoS

Ω̃2(z, u) =
∑

`,ν,k∈{M,m}

PrS`kPrAνk
Prk

× e−z(PSG
S
` Gk+PAG

A
ν Gk)β(max {u,d})−αNLoS

P̃1 (x) = exp
{
− 2πλe

∑
`,ν,n∈{M,m}

PrS`nPrAνn
Pren

∫ ∞
0

1

(
max{re, d} <

(PSGS` Genβ − PAGAν Genβx
xσ2

e

) 1
αLoS

)
fPr(re)redre

}
(32)

P̃2 (x) = exp
{
− 2πλe

∑
`,ν,n∈{M,m}

PrS`nPrAνn
Pren

∫ ∞
0

1

(
max{re, d} <

(PSGS` Genβ − PAGAν Genβx
xσ2

e

) 1
αNLoS

)
(1− fPr(re))redre

}
(33)
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Fig. 1. Effects of transmit power on the average secrecy rate at 38 GHz and
60 GHz: λ = 50/km2, λe = 100/km2, N = 16, and r = 15 m.

their receivers are equipped with N antennas each, and each
eavesdropper is equipped with Ne antennas.

Fig. 1 shows the effects of transmit power on the average se-
crecy rate. The analytical curves are obtained from (6), which
are validated by the Monte Carlo simulations marked by ’+’.
We observe that there exist optimal transmit power values for
maximizing average secrecy rate at both 38 GHz and 60 GHz.
In the low transmit power regime, better secrecy performance
is achieved at 38 GHz, and higher average secrecy rate can be
obtained in the higher mmWave frequency band (60 GHz)
as the transmit power becomes large, which indicates the
interplay between the transmit power and mmWave frequency.
Additionally, using the antenna pattern in Table II, average
secrecy rate is a bit lower at Ne = 16 than that at Ne = 4,
due to fact that more effective antenna gain obtained by
eavesdroppers using UPA with Ne = 16, which deteriorates
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Fig. 2. Effects of transmitting node density on the average secrecy rate at 60
GHz: N = 16, Ne = 16, r = 15 m, and Pt = 30 dBm.

the secrecy performance.
Fig. 2 shows the effects of transmitting node density on

the average secrecy rate at 60 GHz. We see that when
increasing the transmitting node density, the average secrecy
rate declines. The reason is that when the transmitting nodes
are dense, mmWave ad hoc networks becomes interference-
limited, and the interference caused by other transmitting
nodes dominate the performance. It is confirmed that in the
large-scale mmWave ad hoc networks, more eavesdroppers
have a detrimental effect on the secrecy.

Fig. 3 shows the effects of transmit power with different
typical distances on the average rate at 60 GHz. The blue
curve obtained from (7) represents the average rate between
the typical transmitting node and its intended receiver, and
the red curve obtained from (16) represents the average rate
in the most malicious eavesdropping channel. We observe that
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when the transmit power is large (> 30 dB in this figure), the
average secrecy rate slightly increases due to a big increase
in the average rate of the most eavesdropping channel. In
addition, shorter distances between the typical transmitting
node and its desired receiver brings an improvement in the
secrecy performance.

B. Average Secrecy Rate with Artificial Noise

In this subsection, we consider that the antenna beam pat-
terns of sending information signal and artificial noise (AN) at
the transmitting node are (GSM, G

S
m, ϑ) = (3 dB,−3 dB, 45o)

and (GAM, G
A
m, ς) = (3 dB,−3 dB, 45o), respectively, and

the antenna beam pattern of only sending information sig-
nal without AN at the transmitting node is (GM, Gm, θ) =
(10 dB,−10 dB, 15o), as seen in [1].

Fig. 4 shows the effects of transmit power with/without
AN at 60 GHz. The analytical curves without/with AN are
obtained from (6) and (27), respectively. We see that when the
transmitting nodes are not dense (λ = 20/km2 in this figure),
the average secrecy rate increases with the transmit power. In
this case, the use of AN is unable to improve secrecy, and more
power should be allocated to the information signal. Moreover,

it is indicated that eavesdroppers using wide beam pattern can
intercept more information.

VI. CONCLUSION

We analyzed physical layer security in the large-scale
mmWave ad hoc networks. We derived the average secrecy rate
without/with artificial noise. The results provided important
insights for understanding physical layer security in such
networks.
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