3,693 research outputs found

    A unary error correction code for the near-capacity joint source and channel coding of symbol values from an infinite set

    No full text
    A novel Joint Source and Channel Code (JSCC) is proposed, which we refer to as the Unary Error Correction (UEC) code. Unlike existing JSCCs, our UEC facilitates the practical encoding of symbol values that are selected from a set having an infinite cardinality. Conventionally, these symbols are conveyed using Separate Source and Channel Codes (SSCCs), but we demonstrate that the residual redundancy that is retained following source coding results in a capacity loss, which is found to have a value of 1.11 dB in a particular practical scenario. By contrast, the proposed UEC code can eliminate this capacity loss, or reduce it to an infinitesimally small value. Furthermore, the UEC code has only a moderate complexity, facilitating its employment in practical low-complexity applications

    A note on Friedmann equation of FRW universe in deformed Horava-Lifshitz gravity from entropic force

    Full text link
    With entropic interpretation of gravity proposed by Verlinde, we obtain the Friedmann equation of the Friedmann-Robertson-Walker universe for the deformed Ho\v{r}ava-Lifshitz gravity. It is shown that, when the parameter of Ho\v{r}ava-Lifshitz gravity ω\omega\rightarrow \infty, the modified Friedmann equation will go back to the one in Einstein gravity. This results may imply that the entropic interpretation of gravity is effective for the deformed Ho\v{r}ava-Lifshitz gravity.Comment: 9 pages, no figure

    The utility of NBS profiling for plant systematics: a first study in tuber-bearing Solanum species

    Get PDF
    Systematic relationships are important criteria for researchers and breeders to select materials. We evaluated a novel molecular technique, nucleotide binding site (NBS) profiling, for its potential in phylogeny reconstruction. NBS profiling produces multiple markers in resistance genes and their analogs (RGAs). Potato (Solanum tuberosum L.) is a crop with a large secondary genepool, which contains many important traits that can be exploited in breeding programs. In this study we used a set of over 100 genebank accessions, representing 49 tuber-bearing wild and cultivated Solanum species. NBS profiling was compared to amplified fragment length polymorphism (AFLP). Cladistic and phenetic analyses showed that the two techniques had similar resolving power and delivered trees with a similar topology. However, the different statistical tests used to demonstrate congruency of the trees were inconclusive. Visual inspection of the trees showed that, especially at the lower level, many accessions grouped together in the same way in both trees; at the higher level, when looking at the more basal nodes, only a few groups were well supported. Again this was similar for both techniques. The observation that higher level groups were poorly supported might be due to the nature of the material and the way the species evolved. The similarity of the NBS and AFLP results indicate that the role of disease resistance in speciation is limite

    Allele mining in solanum: conserved homologues of Rpi-blb 1 are identified in Solanum stoloniferum

    Get PDF
    Allele mining facilitates the discovery of novel resistance (R) genes that can be used in breeding programs and sheds light on the evolution of R genes. Here we focus on two R genes, Rpi-blb1 and Rpi-blb2, originally derived from Solanum bulbocastanum. The Rpi-blb1 gene is part of a cluster of four paralogues and is flanked by RGA1-blb and RGA3-blb. Highly conserved RGA1-blb homologues were discovered in all the tested tuber-bearing (TB) and non-tuber-bearing (NTB) Solanum species, suggesting RGA1-blb was present before the divergence of TB and NTB Solanum species. The frequency of the RGA3-blb gene was much lower. Interestingly, highly conserved Rpi-blb1 homologues were discovered not only in S. bulbocastanum but also in Solanum stoloniferum that is part of the series Longipedicellata. Resistance assays and genetic analyses in several F1 populations derived from the relevant late blight resistant parental genotypes harbouring the conserved Rpi-blb1 homologues, indicated the presence of four dominant R genes, designated as Rpi-sto1, Rpi-plt1, Rpi-pta1 and Rpi-pta2. Furthermore, Rpi-sto1 and Rpi-plt1 resided at the same position on chromosome VIII as Rpi-blb1 in S. bulbocastanum. Segregation data also indicated that an additional unknown late blight resistance gene was present in three populations. In contrast to Rpi-blb1, no homologues of Rpi-blb2 were detected in any material examined. Hypotheses are proposed to explain the presence of conserved Rpi-blb1 homologues in S. stoloniferum. The discovery of conserved homologues of Rpi-blb1 in EBN 2 tetraploid species offers the possibility to more easily transfer the late blight resistance genes to potato varieties by classical breeding

    Osteocyte shape and mechanical loading

    Get PDF
    There is considerable variation in the shape of osteocyte lacunae, which is likely to influence the function of osteocytes as the professional mechanosensors of bone. In this review, we first discussed how mechanical loading could affect the shape of osteocyte lacunae. Recent studies show that osteocyte lacunae are aligned to collagen. Since collagen fiber orientation is affected by loading mode, this alignment may help to understand how mechanical loading shapes the osteocyte lacuna. Secondly, we discussed how the shape of osteocytes could influence their mechanosensation. In vitro, round osteocytes are more mechanosensitive than flat osteocytes. Altered lacunar morphology has been associated with bone pathology. It is important to know whether osteocyte shape is part of the etiology

    Near-capacity joint source and channel coding of symbol values from an infinite source set using Elias Gamma Error correction codes

    No full text
    In this paper we propose a novel low-complexity Joint Source and Channel Code (JSCC), which we refer to as the Elias Gamma Error Correction (EGEC) code. Like the recently-proposed Unary Error Correction (UEC) code, this facilitates the practical near-capacity transmission of symbol values that are randomly selected from a set having an infinite cardinality, such as the set of all positive integers. However, in contrast to the UEC code, our EGEC code is a universal code, facilitating the transmission of symbol values that are randomly selected using any monotonic probability distribution. When the source symbols obey a particular zeta probability distribution, our EGEC scheme is shown to offer a 3.4 dB gain over a UEC benchmarker, when Quaternary Phase Shift Keying (QPSK) modulation is employed for transmission over an uncorrelated narrowband Rayleigh fading channel. In the case of another zeta probability distribution, our EGEC scheme offers a 1.9 dB gain over a Separate Source and Channel Coding (SSCC) benchmarker

    Crossing Statistic: Bayesian interpretation, model selection and resolving dark energy parametrization problem

    Full text link
    By introducing Crossing functions and hyper-parameters I show that the Bayesian interpretation of the Crossing Statistics [1] can be used trivially for the purpose of model selection among cosmological models. In this approach to falsify a cosmological model there is no need to compare it with other models or assume any particular form of parametrization for the cosmological quantities like luminosity distance, Hubble parameter or equation of state of dark energy. Instead, hyper-parameters of Crossing functions perform as discriminators between correct and wrong models. Using this approach one can falsify any assumed cosmological model without putting priors on the underlying actual model of the universe and its parameters, hence the issue of dark energy parametrization is resolved. It will be also shown that the sensitivity of the method to the intrinsic dispersion of the data is small that is another important characteristic of the method in testing cosmological models dealing with data with high uncertainties.Comment: 14 pages, 4 figures, discussions extended, 1 figure and two references added, main results unchanged, matches the final version to be published in JCA

    Intertwined Order and Holography: The Case of Parity Breaking Pair Density Waves

    Get PDF
    Article / Letter to editorLeids Instituut Onderzoek Natuurkund

    Validity of the Generalized Second Law of Thermodynamics of the Universe Bounded by the Event Horizon in Brane Scenario

    Full text link
    In this paper, we examine the validity of the generalized second law of thermodynamics (GSLT) of the universe bounded by the event horizon in brane-world gravity. Here we consider homogeneous and isotropic model of the universe filled with perfect fluid in one case and in another case holographic dark energy model of the universe has been considered. The conclusions are presented point wise.Comment: 8 pages, the paper has been accepted in EPJC for publication. Conclusion has been modified an some references have been adde

    Intertwined Order and Holography: The Case of Parity Breaking Pair Density Waves

    Get PDF
    Article / Letter to editorLeids Instituut Onderzoek Natuurkund
    corecore