44 research outputs found

    A Location-Inventory-Routing Problem in Forward and Reverse Logistics Network Design

    Get PDF
    We study a new problem of location-inventory-routing in forward and reverse logistic (LIRP-FRL) network design, which simultaneously integrates the location decisions of distribution centers (DCs), the inventory policies of opened DCs, and the vehicle routing decision in serving customers, in which new goods are produced and damaged goods are repaired by a manufacturer and then returned to the market to satisfy customers’ demands as new ones. Our objective is to minimize the total costs of manufacturing and remanufacturing goods, building DCs, shipping goods (new or recovered) between the manufacturer and opened DCs, and distributing new or recovered goods to customers and ordering and storage costs of goods. A nonlinear integer programming model is proposed to formulate the LIRP-FRL. A new tabu search (NTS) algorithm is developed to achieve near optimal solution of the problem. Numerical experiments on the benchmark instances of a simplified version of the LIRP-FRL, the capacitated location routing problem, and the randomly generated LIRP-FRL instances demonstrate the effectiveness and efficiency of the proposed NTS algorithm in problem resolution

    Integrated Inventory Routing Problem with Quality Time Windows and Loading Cost for Deteriorating Items under Discrete Time

    Get PDF
    We investigate an integrated inventory routing problem (IRP) in which one supplier with limited production capacity distributes a single item to a set of retailers using homogeneous vehicles. In the objective function we consider a loading cost which is often neglected in previous research. Considering the deterioration in the products, we set a soft time window during the transportation stage and a hard time window during the sales stage, and to prevent jams and waiting cost, the time interval of two successive vehicles returning to the supplier’s facilities is required not to be overly short. Combining all of these factors, a two-echelon supply chain mixed integer programming model under discrete time is proposed, and a two-phase algorithm is developed. The first phase uses tabu search to obtain the retailers’ ordering matrix. The second phase is to generate production scheduling and distribution routing, adopting a saving algorithm and a neighbourhood search, respectively. Computational experiments are conducted to illustrate the effectiveness of the proposed model and algorithm

    Design of a Multiobjective Reverse Logistics Network Considering the Cost and Service Level

    Get PDF
    Reverse logistics, which is induced by various forms of used products and materials, has received growing attention throughout this decade. In a highly competitive environment, the service level is an important criterion for reverse logistics network design. However, most previous studies about product returns only focused on the total cost of the reverse logistics and neglected the service level. To help a manufacturer of electronic products provide quality postsale repair service for their consumer, this paper proposes a multiobjective reverse logistics network optimisation model that considers the objectives of the cost, the total tardiness of the cycle time, and the coverage of customer zones. The Nondominated Sorting Genetic Algorithm II (NSGA-II) is employed for solving this multiobjective optimisation model. To evaluate the performance of NSGA-II, a genetic algorithm based on weighted sum approach and Multiobjective Simulated Annealing (MOSA) are also applied. The performance of these three heuristic algorithms is compared using numerical examples. The computational results show that NSGA-II outperforms MOSA and the genetic algorithm based on weighted sum approach. Furthermore, the key parameters of the model are tested, and some conclusions are drawn

    The Vehicle Routing Problem with Simultaneous Pickup and Delivery Considering the Total Number of Collected Goods

    No full text
    As a consequence of e-commerce development, large quantities of returned goods are shipped every day. The vehicle routing problem with simultaneous delivery and pickup (VRPSDP) has become one of the most important areas of logistics management. Most related studies are aimed at minimizing travel time. However, the total number of collected goods is also very important to logistics companies. Thus, only considering the traveling time cannot reflect actual practice. To effectively optimize these operations for logistics companies, this paper introduces the vehicle routing problem with simultaneous pickup and delivery considering the total number of collected goods. Based on the principles of considering the number of collected goods, a bi-objective vehicle routing model minimizing the total travel time and maximizing the total number of collected goods simultaneously is developed. A polynomial time approximation algorithm based on the ε-constraint method is designed to address this problem, and the approximation ratio of the algorithm is analyzed. Finally, the validity and feasibility of the proposed model and algorithm are verified by test examples, and several managerial insights are derived from the sensitivity analysis
    corecore